

3D IC for Real Chips

Bob Patti, CTO

rpatti@tezzaron.con

Why We Scale?

>180nm 130nm 90nm 65nm 45nm 28nm 22nm 16nm

How Real is 3D???

16Gb NAND flash (2Gx8 chips), Wide Bus DRAM

Intel

CPU + memory

4 die 65nm interposer

560µ

Raytheon/Ziptronix
PIN Detector Device

IBM

RF Silicon Circuit Board / TSV Logic & Analog

> Toshiba 3D NAND

Span of 3D Integration

Packaging

3D-ICs 100-1,000,000/sqmm Wafer Fab

IBM

IBM/Samsung

1000-10M Interconnects/device

1s/sqmm

Peripheral I/O

- Flash, DRAM
- CMOS Sensors

100,000,000s/sqmm

Transistor to Transistor

Ultimate goal

A Closer Look at Wafer-Level Stacking

Next, Stack a Second Wafer & Thin:

Stacking Process Sequential Picture

High Precision Alignment

Misalign=0.3um

Then, Stack a Third Wafer:

Finally, Flip, Thin & Pad Out:

This is the completed stack!

3D Interconnect Characteristics

	SuperContact TM I 200mm Via First, FEOL	SuperContact TM II 300mm Via First, FEOL	SuperContact TM III 200mm Via First, FEOL	SuperContact TM 4 200mm Via First, FEOL	Bond Points
Size L X W X D Material	1.2 μ X 1.2 μ X 6.0μ W in Bulk	1.6 μ X 1.6 μ X 10.0μ W in Bulk	0.85 μ X 0.85 μ X 10μ W in Bulk	0.40 μ X 0.40 μ X 2μ W in SOI	1.7 μ X 1.7 μ Cu
Minimum Pitch	<2.5 μ	<3.2 μ	1.75 μ	0.8 μ	2.4 μ (1.1 μ)
Feedthrough Capacitance	2-3fF	6fF	3fF	0.2fF	<<
Series Resistance	<1.5 Ω	<1.8 Ω	<3 Ω	<1.5 Ω	<

Relative TSV Size

Pitch and Interconnect

- SuperContactTM is 500f² (including spacing)
- Face to face is 350f² (including spacing)
- Chip on wafer I/O pitch is 35,000f²
- Standard cell gate is 200 to 1000f²
 - 3 connections
- Standard cell flip-flop is 5000f²
 - 5 connections
- 16 bit sync-counter is 125,000f²
 - 20 connections
- Opamp is 300,000f²
 - 4 connections

f² is minimum feature squared

R8051/Memory

5X Performance 1/10th Power

New Apps – New Architectures

"Dis-Integrated" 3D Memory

Memory Layers

Controller Layer

Octopus DRAM

- 1-4Gb
- 16 Ports x 128bits (each way)
- @1GHz
 - CWL=0 CRL=2 SDR format
 - 7ns closed page access to first data (aligned)
 - <20ns full cycle memory time
 - 288GB/s data transfer rate
- Max clk=1.6GHz
- Internally ECC protected, Dynamic self-repair, Post attach repair
- 115C die full function operating temperature
- JTAG/Mailbox test&configuration
- Power -40%
- Density x4++
- Performance +300%
- Cost -50%

Octopus DRAM Layer

Octopus Controller

The Industry Issue

Need 50x bandwidth improvement.

Need 10x better cost model than embedded memory.

- To continue to increase CPU performance, exponential bandwidth growth required.
- ➤ More than 200 CPU cycles of delay to memory results in cycle for cycle CPU stalls.
 - ➤ 16 to 64 Mbytes per thread required to hide CPU memory system accesses.
- No current extension of existing IC technology can address requirements.
- Memory I/O power is running away.

The "Killer" App: Split-Die

Die to Wafer With Stencils

Die to Wafer With BCB Template

RPI Effort under Dr. James Lu

- •KGD
- •2um alignment / 5um pitch limit
- •Cu-Cu thermo compression bonding
- Multilayer capability

Logic on Memory

Hyper-Integration 5-9 layer stacks

Challenges

23 customer designs.

- Tools
 - Partitioning tools
 - 3D P&R
- Access
- Testing
 - IEEE 1500
 - IEEE 1149
- Standards
 - Die level
 - JEDEC JC-11 Wide bus memory
 - Foundry interface

3D Place & Route

TeZzaron SEMICONDUCTOR

3D LVS using QuartzLVS from Magma

Key features

- LVS each of the 2D designs as well as the 3D interconnections between them in a single run
- Driven by a 3D "tech file" that specifies the number and order of layers, interconnect material, etc
- TSV aware LVS extraction
- Full debug environment to analyze any LVS mismatch


```
# 3D LVS Tech file
WAFER: 1
LAYOUT TOP BLOCK: lvslayer1_1
SCHEMATIC TOP BLOCK: lvslayer1
GDSII FILE: lvslayer1_1.gds
SCHEMATIC NETLIST: lvslayer1.sp
INTERFACE UP METAL: 1;0
INTERFACE UP TEXT: 1;101
...
INTERFACE:
LAYOUT TOP BLOCK: lvstop
SCHEMATIC TOP BLOCK: lvstop
GDSII FILE: lvstop_ALL.gds
SCHEMATIC NETLIST: lvstop.sp
BOND OUT METAL: 5;0
BOND OUT TEXT: 5;101
```


3D MPW

Complete 3D PDK 7th Release

- GF 130nm
- Calibre, Synopsis, Hspice, Cadence
- MicroMagic 3D physical editor
- Magma 3D DRC/LVS
- Artisan standard cell libraries
- Release 8 up coming

- July 1st MPW Tapeout
- 90nm, 150nm SOI
- Silicon Workbench
- >70 in process
- >400 users

Near End-of-Line

Summery

- 3D has numerous and vast opportunities!!
 - New design approaches
 - New ways of thinking
 - New tools
 - Poised for explosive growth

Sensors

Computing MEMS

Communications

