Online Determination of the LHC Luminous Region with the ATLAS High Level Trigger

Machine Detector Interface & Beam Instrumentation

TiPp 2011 Chicago, June 13, 2011

(on behalf of the ATLAS Collaboration)

ATLAS as "Beam Instrumentation"

- ~ 0.05 m from the IP
- > 80 million channels

- The LHC is an extremely well instrumented machine
- It is amazing how much we know about its beams and how well we know it
- Nevertheless, close to the interaction region the experimental detectors are not only best positioned but overwhelmingly well equipped to characterize it
- Their sophisticated High Level Trigger systems allow to do that in real time

Rainer Bartoldus

2 channels (analog)

Overview

- The ATLAS High Level Trigger (HLT) provides a unique platform for measuring LHC luminous region parameters
- Doing this in the online environment is particularly challenging in several ways:
 - Tightly constrained CPU and bandwidth budget of the trigger system
 - Massively parallel execution of algorithms that need special infrastructure to be aggregated and fanned out again
 - You get to see every event only once
 - No iterations on conditions, resolution etc: everything is 'at the edge of time'
- On the positive side, it offers unique advantages, too:
 - Unparalleled statistics, taking advantage of the many rejected events
 - Practically the only place with enough rate to see per-bunch time-evolutions
 - Very short latency to give quasi real-time feedback (minute scale)
- In addition, the Trigger itself needs to know very precisely and adjust to - the position, size and orientation of the luminous region (*e.g. b*-tagging)
- This measurement is part of a bigger feedback loop around the HLT

ATLAS Inner Detector

- Silicon Pixels
 - 3 barrel layers
 - 2 x 3 endcap discs
 - $-\sigma_{ro} \approx 10 \,\mu\text{m}$
 - $-\sigma_z \approx 115 \,\mu\text{m}$
- Silicon Strips (SCT)
 - 4 barrel layers
 - 2 x 9 endcap discs
 - $-\sigma_{r\varphi} \approx 17 \,\mu\text{m}$
 - σ_z ≈ 580 μm
- Only the silicon detectors (Pixel+SCT) needed here for pattern recognition, track finding and fitting
- Vertex resolution is dominated by the Pixel detector
- Only a small fraction (~80 kB) of the total event size (~1.6 MB)
 - But all of the detector needed on every event (not just Region of Interest)

Primary Vertices

At present luminosities, just above 10³³ cm⁻² s⁻¹, there are on average 6 interactions per bunch crossing

- Called "pile-up"

- In principle these allow us to make several measurements on each event
- However, they are computationally very expensive to reconstruct and resolve in real time

ATLAS High Level Trigger

- Runs after the Level 1 hardware trigger
- Massively parallel, farm of 1000+ nodes
- Two stages: Level 2 (L2) + Event Filter
- Current rates: 50 kHz L1 \rightarrow 4.5 kHz L2 \rightarrow 400 Hz Event Filter (logging to disk)
- L2 does partial reconstruction
 - First trigger with access to Si-tracker data
- Chose L2 Trigger to host beam spot algorithm
 - Highest available statistics, low latency
 - But: challenge to do full scan of silicon tracker detectors for data transfer and pattern recognition, track reconstruction
 - At the edge of available bandwidth + CPU
- Currently 10 racks of 30 nodes with 8 cores each (2400 processes)
- For more on ATLAS Trigger/DAQ: c.f. earlier talks by Sergio Ballestrero and Srini Rajagopalan at this conference

Beam Spot Algorithm

- Dedicated algorithm that executes on the L2 processors (as part of a rich trigger menu of physics and calibration triggers)
- Invokes a "full-scan" track reconstruction using Pixel and SCT, and then employs a fast vertex fitter to reconstruct primary vertices
 - Clusters of tracks are formed along the beam line (z), around the highest transverse-momentum (p_T) seed track
 - In an iterative procedure, the clusters are fitted to a common vertex
- The coordinates (and other relevant properties) of each vertex are histogrammed online
- From the spatial distribution of primary vertices we extract through fits the **position**, **size**, **and orientation of the luminous region**
 - Parameters are the centroid *x*,*y*,*z*; widths $\sigma_x, \sigma_y, \sigma_z$; and title angles θ_{xz}, θ_{yz}
 - Together with their errors (significance)
- Challenge: An important ingredient to measuring the true luminous region widths is to correct for the intrinsic vertex resolution
 - Typical vertex resolution is on the same order as the transverse widths
- Special data needs to be acquired to accomplish this

Primary Vertex Distributions

- Projections of the threedimensional distribution of reconstructed primary vertices are histogrammed and published once per minute
- They are aggregated ("gathered") across the farm and re-published
- The large amount of available statistics gives rise to very precise determinations of all parameters
- In addition, the vertex count can serve as a measure of luminosity (although this gets increasingly difficult with pileup)

2.5 Vertex y [mm] 2.0 10^{4} 1.5 1.0 10^{3} 0.5F 0.0 10^{2} -0.5 -1.0 ATLAS Operations May 29 2011 10 -1.5 LHC Fill: 1815 $\sqrt{s} = 7 \text{ TeV}$ -2.0 **Online Primary Vertex** -2.5^L....l.**.**....... -2.5 -2 -1.5 -1 -0.5 0 0.5 2 2.5 15 Vertex x [mm]

- Transverse distribution of 100,000 vertices reconstructed by the HLT
- One minute of data taking!

Primary Vertex Distributions (cont.)

- 1D-projections of the vertex distributions
- Means of gaussian fits measure centroid position to better than 1% of the width with one minute of data
- Transverse widths (x, y) are not yet corrected for resolution

10

6

2

0

May 29 2011

∖s = 7 TeV

LHC Fill: 1815

Online Primary Vertex

-0.2

-0.4

Track Impact Parameters: Cross Check

- As an alternative to (and cross check of) the vertex method one can use the track transverse impact parameter d_0 versus azimuth angle φ distribution to extract the centroid position
- The results are in excellent agreement with the vertex method
- The method doesn't provide the widths and has less control over backgrounds or against pile-up (so vertex is the preferred method)

Beam Line Tilt

- Horizontal and vertical angles of the luminous region in the ATLAS coordinate system can (and must) be measured very accurately
- These are mostly a result of the residual global misalignment of the ATLAS pixel detector with respect to the LHC beam line
- Transverse distributions are measured in bins along the beam (*z*)-axis, then a linear fit is performed to extract the slope
- Residual tilts are very small and stable in time. We originally found a 500 µrad horizontal tilt, and decided to compensate for it by rotating the ATLAS global coordinate system

Time-Variation of Beam Position

Three-dimensional centroid position is measured over the course of several LHC fills Significant variations of the transverse position (from orbit corrections and drifts) are visible within a fill and from fill to fill Similar significant longitudinal time variations are related to RF-

phase changes

Rainer Bartoldus

Effect on *b*-Tagging

- Algorithms that depend on track impact parameters or secondary vertex significance are sensitive to knowing the beam spot position and size
- These triggers have to be configured with the current beam spot parameters
- Currently the most sensitive trigger is the *b*-jet trigger
 - Shifts on the order of a few σ of the luminous size can kill the efficiency and increase the fake rate to make the trigger non-functional
- The stored beam spot needs to be updated during the run to keep/get *b*-tagging working

• An off-set beam spot will fake large impact parameters

Measuring Resolution: Vertex Splitting

- The vertex resolution changes not only with detector conditions but also with the event mix from the (always evolving) trigger menu
- The only way to account for this is to **measure it online**
- We use the method of splitting each primary vertex into two, then fitting the two halves separately and measuring their displacement
 - Represents $\sqrt{2}$ times the resolution of a vertex of half the multiplicity
- A lot of care must be taken to avoid systematic effects (biases)

Split-Vertex Resolution

- Vertex resolution is a strong function of track multiplicity
- The two transverse resolutions are the same; longitudinal resolution is about twice that amount; (less different than silicon hit resolutions)
- Split vertex distributions show two competing effects:
 - The resolution is highest for vertices with the highest number of tracks
 - Statistics is highest for the low-multiplicity vertices and falls precipitously
- To optimize precision, one has to include the lowest multiplicity that can still resolve the spot size to be measured

Online Resolution Correction

- The observed width and measured resolution are strong functions of the number of tracks in a vertex
- \rightarrow The correction has to be applied in bins of track multiplicity
- Corrected width stays approximately flat regardless of multiplicity

Vertex Resolution Along *z*

- Vertex resolution along the beam axis (as expected) somewhat lower than in the transverse plane
- Shows similar behavior as a function of number of tracks per vertex
- Correction is entirely negligible on the scale of the longitudinal size (~55 mm)

Time-Evolution of Luminous Size

- Effect of transverse emittance blow-up during each fill is clearly visible
 - Approximately 15% horizontal, 10% vertical luminous width increase over a 10 hour fill
- Longitudinal emittance growth behaves similarly
- Fill-to-fill variations are comparatively small, but not negligible

LHC Feedback

TLAS:

ates TRP

rowser

tatisticsOverview

ertexDistributions

ertexProperties rackDistributions eamLineTilt erBunchMonitoring olitVertices

Live histograms are published once a minute

Available in the control room as well as over the web

Give details of the track/vertex distributions and parameters

Fill #: 1815	Energy: 3500 GeV	I(B1): 1.29e+14	l(B2): 1.30e+14
PROTON P	HYSICS Be	am Mode:	STABLE BEAMS
	50ns_1092b	+1small_1042_35_1	008_108bpi
3.5TeV_10Aps			
ATLAS	ALICE	CMS	LHCb
1.60 m	10.00 m	1.50 m	3.00 m
-120(V) 80(V)	120(H)	-250(V)
	no_value(\	/)	no_value(V)
0(H)	.3(H)	5(V)	11(V)
n 1042	35	1042	1008
ATLAS	ALICE	CMS	LHCb
0.02 ns	s 0.10 ns	-0.01 ns	0.01 ns
25.0,24	.9	25.8,23.6	45.8,44.1
56.1		52.7	41.1
-46.8,108	1.9	179.0,-746.	7 462.3,-17.1
-3.6		-6.2	0.1
-12.24,-53	3.45	59.75,78.53	-30.98,43.54
	PROTON PI ATLAS 1.60 m -120(V 0(H) 1042 ATLAS 0.02 ns 25.0,24. 56.1 -46.8,108 -3.6	ATLAS ALICE 1.60 m 10.00 m -120(V) 80(V) no_value(V) 0(H) 0(H) .3(H) m 1042 25.0,24.9 56.1 -46.8,1081.9 -46.8,1081.9	PROTON PHYSICS Beam Mode: 50ns_1092b+1small_1042_35_1 3.5TeV_10Aps ATLAS ALICE CMS 1.60 m 10.00 m 1.50 m -120(V) 80(V) 120(H) no_value(V) 0(H) .3(H) 5(V) m 1042 35 1042 ATLAS ALICE CMS 0.02 ns 0.10 ns -0.01 ns 25.0,24.9 25.8,23.6 56.1 56.1 52.7 -46.8,1081.9 179.0,-746. -3.6 -6.2 -6.2

The luminous region parameters are extracted through fits also once a minute

Corrections are performed and values are sent over to the LHC

Rainer Bartoldus

Entries

1.097

Mean RMS

Beam Spot Parameter Redistribution

- Time variations make it necessary to update parameters used by the HLT **during running** (including a bootstrap at the beginning of a fill)
- Critical for algorithms sensitive to primary vertex such as *b*-tagging
- The first challenge is how to transmit the parameters back to the many thousands of HLT processes (on a sharp time boundary)
- ATLAS has a proxy-technology for database configurations that makes it possible to do such updates extremely fast also within a run

- CORAL Server & Proxy
 - Dedicated database technology developed for ATLAS HLT as example
 - Proxy hierarchy allows simultaneous access of 1000s of clients
 - *Multiplexes* and *caches* queries and responses

(Collaboration with CERN IT + U.Mainz)

High Level Trigger Feedback Loop

Rainer Bartoldus

Trigger Auto-Updates

ATLAS: RUNNIN PositionPerLBN PositionCumulative PositionNominalPerLBN PositionNominalCumulative Errors StatisticsOverview Acc. Vertex X-X Acc. Vertex Y-Y Entries 135838 Entries 135838 VertexDistributions -0.00269 Mean 0.000823 Mean VertexProperties 0.08032 RMS TrackDistributions BeamLineTilt PerBunchMonitoring 5 SplitVertices Rates WTRP 600 Browser 400 200 0.2 0.3 0.4 Vertex Y-Y 0.2 0.3 Vertex X-X -0.4 -0.3 -0.2 -0.1 0 0.1 -0.4 -0.3 -0.2 -0.1 0 0.1 Acc. Vertex Z-Z Entries 135838 Acc. Vertex Y-Y vs X-X 135838 -0.1672 Mean loan y 0.001099 54.95 .0 003029 0.09904 Web interface to live L2 histograms 2000 - Cumulative or per minute 100 150 200 250 Vertex Z-Z [mm] Vertex X-X

- Automatic updates of the farm are monitored online using "delta distributions" that compare observed values with the currently stored "nominal" values
- These are tuned to stay within a narrow range:

 Updates are triggered when positions move by ±10% of the width, or widths change by ±10% from nominal (both with 2σ significance); or errors improve by more than 50%

ATLAS *Operations*

Online-Offline Comparison

- A few hours after each fill, the more sophisticated offline beam spot determination runs on a fraction of the logged events
 - Complementary:resolution, << statistics
 - Unbinned maximum likelihood fit with error scaling
- Automatic monitoring shows excellent agreement between these very different methods!
 - 1 μ m difference in σ_y due to still uncorrected residual tilt
 - Slight difference in σ_z due non-gaussian tails

Rainer Bartoldus

Bunch-by-bunch Monitoring

- Luminous centroid positions for 1042 bunches colliding in ATLAS
- Distinct structures are visible across the bunches
 - Particularly in the vertical plane with variation of 5 µm
- Repeating patterns for bunch trains
- Data show entire fill: expect to be able to make a 5% measurement every ~20 min

Conclusions

- The ATLAS High Level Trigger is the first system able to see tracks and vertices, and to allow a reconstruction of the luminous region
- High event rates make this both extremely challenging and precise
- The ability to use (mostly) rejected events is unique to the HLT
- A method to correct for resolution based on vertex splitting has been put in place that is working well down to current spot sizes
- Timelines of luminous region parameters are produced online that provide interesting insights into IP-orbit and RF-phase variations as well as transverse and longitudinal emittance growth
- Owing to the high rate of events, the system is able to do per-bunch measurements even at the current O(1000) colliding pairs
- A feedback system has been developed that transmits live parameters to the LHC and also performs automatic updates of the HLT farm
- In many respects, the ATLAS luminous region measurements can complement LHC beam instrumentation

Outlook

- The online beam spot measurement in the ALTAS High Level Trigger continues to be a challenge
- Just when we managed to adapt to 25 µm spot sizes and 1042 bunches, the LHC keeps pushing the envelope
 - We may expect 1380 bunches in a couple of weeks (and will have to deal with 2808 bunches eventually)
- There is the possibility/hope to further squeeze the emittance while increasing the bunch charges for another factor of ~3 in luminosity
 - This would create on the order or 25 interactions per crossing, making it even harder to reconstruct the even smaller beam spot
- We have to work to turn the higher event rates into an advantage and refine and improve our methods (*i.e.* increase the resolution)
- Most of the instrumentation we added was not only not foreseen in the original design but seemed daring or impossible to do...

- Yet the flexible architecture of the ATLAS online left room for new ideas

• We just have to rely on measurement capabilities to improve along the way and on new ideas to exploit them!

Backup Material

Primary Vertices

Rainer Bartoldus