A Scan Study of v_{e}-CC and NC Event Simulated in the LBNE Water Cherenkov Detector

Hongyue Duyang
University of South Carolina

TIPP 2011
UUSCHEP
University of South Carolina
High Energy Physics Group

Introduction

- Water Cherenkov (WC) and Liquid Argon (LAr) are two options under consideration for the far detector (FD) of the LBNE experiment.
- One of the issues is the FD's sensitivity to the Ve-appearance which involves the detection efficiency of the signal, $\mathrm{ve}-\mathrm{CC}$, and the background, NC events.
- The proposed WC sensitivity is largely based upon the Super-K (SK) experience, which is not optimized for the LBNE energy in the $1.5--5 \mathrm{GeV}$ region covering the first oscillation maximum.
- We use event scanning as a tool to understand and characterize the neutral current (NC) background processes to the V_{e} appearance signal.

- WC: $\sim 15 \%$ for $v_{e}, \sim 0.8 \%$ for NC at $\sim 2 \mathrm{GeV}$
(the product of the plots above, which are from SK algorithm)
- LAr: $\sim 80 \%$ for $\mathrm{V}_{\mathrm{e}}, \sim 1 \%$ for NC

WC Event Scan

- Samples with $\sim 2000 \mathrm{Ve}-\mathrm{CC}$ and $\sim 10000 \mathrm{v}_{\mu}-\mathrm{NC}$ events were generated with WCSim assuming DUSEL 100 kton geometry, 10 inch tube, high QE, 15% coverage.
- Vertex at $(0,0,0)$.
- Focus on first oscillation maximum: $1.5 \mathrm{GeV}<$ Evis $<8 \mathrm{GeV}(880 \mathrm{Ve}$ and 2822 NC). I. $5 \sim 4 \mathrm{GeV}$ is the signal around the first oscillation maximum, and $4 \sim 8 \mathrm{GeV}$ is the control region.
- Kinematic cuts applied: *electron energy > I GeV (Ve-CC) and * $\pi 0$ energy $>0.5 \mathrm{GeV}\left(\mathrm{V}_{\mu}-\mathrm{NC}\right)$.
- Pictures of $690 \mathrm{Ve}-\mathrm{CC}$ and $1392 \mathrm{~V}_{\mathrm{u}}-\mathrm{NC}$ events passed the cuts were then mixed and scanned (blindly). The number of rings were counted and their clarity defined.

Example Event Pictures

Water Cherenkov Detector: Event \# 90

A Ve event with I single electron ring

Water Cherenkov Detector: Event \# 511

A NC event with 2 gamma rings from $\pi 0$ decay

Example Event Pictures

Water Cherenkov Detector: Event \# 59

NC event with 3 rings

Water Cherenkov Detector: Event \# 222

NC event with 4+ rings

Scan Result

	I Ring	2 Clear Rings	I Clear \& I Not-So-Clear	I CLear \& I Unclear	3 Rings	>=4 Rings	Sum
Ve	302	47	54	95	123	69	690
	I Ring	2 Clear Rings	I Clear \& I Not-So-Clear	I CLear \& I Unclear	3 Rings	$>=4$ Rings	Sum
NC	125	157	138	126	450	396	1322

- In visible energy range $1.5 \mathrm{GeV} \sim 8 \mathrm{GeV}$
- Consider 2 clear ring, | clear \& | not-so-clear and | clear \& | unclear events as 2 ring.
- I-ring and 2 -ring events were then used in further analysis.

Analysis

- Classify rings into electron-ring, muon-ring and pion-ring according to generated particle id.
- Smear p and θ using the parametrization based upon SK analysis.
- At least I electron-ring with energy $>=\| \mathrm{GeV}$.
- Classify events into 3 categories:
*I electron ring
*2 electron rings
*I electron ring + I muon/pion ring
- Apply further kinematic cuts on 2 ring events to reduce NC background.

Kinematic Cuts on 2 Ring Events

2-Ring Events Mass Reconstruction

Pt of Leading e/gamma Ring WRT None-Leading Ring

Apply further kinematic cuts on 2 ring events:
MI2 >= 0.175 GeV and $ \mathrm{Pt}>=1 \mathrm{GeV}$ to reduce NC background.

Single TT0 Events

- Single $\pi 0$ events were scanned as a check
- 100 events at Ето $=3.5 \mathrm{GeV}$ and 0.4 GeV
- Ето $=3.5 \mathrm{GeV},<2 \%$ had 2 rings.
- $\mathrm{E}_{\text {т }} 0=0.4 \mathrm{GeV}, 60 \%$ had 2 rings.

Result

Ve | Generated Events | Scanned Events | After Kinematic Cuts |
| :---: | :---: | :---: |
| 880 | 690 | $443(50.3 \%)$ |

- Generated Events: in visible energy range $\mathrm{I} .5 \sim 8 \mathrm{GeV}$.
- Scanned Events:
*electron energy >= IGeV ($\mathrm{Ve}-\mathrm{CC}$)
* $\pi 0$ energy $>=0.5 \mathrm{GeV}\left(V_{\mu}-\mathrm{NC}\right)$
- Further Kinematic Cuts:
*Keep I ring and 2 ring events
*At least I electron-ring with energy >= 1 GeV .
MI2 >= 0.175 GeV and $ \mathrm{Pt}>=\mathrm{IGeV}$ (2 ring events)

What Type of Interactions We Are Dealing With?

Ve	Coh	QE	Res	DIS
Tot	$4(0.455 \%)$	$154(17.5 \%)$	$115(25.8 \%)$	$460(52.3 \%)$
Scanned	$4(0.803 \%)$	$136(27.3 \%)$	$175(35.1 \%)$	$166(33.3 \%)$
After cuts	$4(0.903 \%)$	$106(23.9 \%)$	$168(37.9 \%)$	$149(33.6 \%)$

NC	No-T	$\mid \pi 0$	$\mid \pi+/-$	$>=2 \pi$
Tot	$87(3.08 \%)$	$259(9.18 \%)$	$60(2.13 \%)$	$2416(85.6 \%)$
Scanned	$0(0 \%)$	$174(31.9 \%)$	$0(0 \%)$	$372(68.1 \%)$
After cuts	$0(0 \%)$	$35(33.7 \%)$	$0(0 \%)$	$69(66.3 \%)$

Composition of Ve-CC and NC Samples $1.5 \leq$ Evis $\leq 8 \mathrm{GeV}$

- $\quad>70 \%$ of the Ve are non-QE.
- $\sim 70 \%$ of NC background have $>=2 \pi$.

What Makes The Background?

Ve	I e/Y ring 301	$\begin{gathered} 2 \mathrm{e} / \mathrm{Y} \text { rings } \\ 59 \end{gathered}$	$\mid \mathrm{e} / \gamma \text { ring }+I \pi \text { ring }$	Sum 443
	1γ ring	2γ rings	1γ ring $+1 \pi$ ring	Sum
N	79	12	14	105

- $\sim 75 \%$ of the NC background have I y ring.
- The other γ ring from $\pi 0$ decay is either too weak or overlapping with the leading ring.

Water Cherenkov Detector: Event \# 941

A NC event identified as I-ring

Water Cherenkov Detector: Event \# 941

The leading γ ring (switch off $\gamma 2$)

Water Cherenkov Detector: Event \# 941

The second γ ring is too weak to identify (switch off $\gamma 1$)

Water Cherenkov Detector: Event \# 178

A NC event identified as I-ring

Water Cherenkov Detector: Event \# 178

The leading γ ring (switch off $\gamma 2$)

Water Cherenkov Detector: Event \# 178

The second γ ring is on top of $\gamma 1$ (switch off $\gamma 1$)

Conclusion

In visible energy region $\mathrm{I} .5 \sim 8 \mathrm{GeV}$:

- V e signal at level of $\sim 50 \%$
- NC background at level of $\sim 2.5 \%-3 \%$.
- $\quad>70 \%$ of V_{e} are non-QE
- $\sim 70 \%$ NC have $>=2 \pi$'s
- $\sim 75 \%$ of the NC background have $\mathrm{l} \gamma$ ring with 2 nd ring too weak or overlapping with the leading ring

Results are obtained by eye-scanning. No further pattern recognition was performed.

The End

Backup Slides

Proposed $V_{e}-C C$ and $V_{\mu}-N C$ Background in WC and LAr (LBNE)

Nue appearance measurement

(From Long Baseline Physics Working Group Report)

Result

Visible Energy (GeV)	$1.5 \sim 4$	$4 \sim 8$	Sum
Generated Events	452	428	880
Scanned	319	371	690
After Cuts	$231(51.1 \%)$	$212(49.5 \%)$	$443(50.3 \%)$

Visible Energy (GeV)	$1.5 \sim 4$	$4 \sim 8$	Sum
Generated Events	$2.13 \mathrm{E}+03$	688	$2.82 \mathrm{E}+03$
Scanned	879	514	$1.39 \mathrm{E}+03$
After Cuts	$60(2.81 \%)$	$45(6.54 \%)$	$105(3.72 \%)$

What type of interactions we are dealing with?

Ve	Coh	QE	Res	DIS
Tot	$3(0.664 \%)$	$106(23.5 \%)$	$66(33.4 \%)$	$I 7 I(37.8 \%)$
Scanned	$3(1.14 \%)$	$92(35 \%)$	$105(39.9 \%)$	$57(21.7 \%)$
After cuts	$3(1.3 \%)$	$69(29.9 \%)$	$101(43.7 \%)$	$53(22.9 \%)$

nc	No-pion	I pi0	I pi+-	n pi
Tot	$87(4.08 \%)$	$246(11.5 \%)$	$60(2.81 \%)$	$1741(81.6 \%)$
Scanned	$0(0 \%)$	$162(38.2 \%)$	$0(0 \%)$	$262(61.8 \%)$
After cuts	$0(0 \%)$	$28(46.7 \%)$	$0(0 \%)$	$32(53.3 \%)$

Composition of Ve-CC and NC Samples I. $5 \leq$ Evis $\leq 4 \mathrm{GeV}$

What type of interactions we are dealing with?

Ve	Coh	QE	Res	DIS
Generated	$1(0.234 \%)$	$48(11.2 \%)$	$49(17.8 \%)$	$289(67.5 \%)$
Scanned	$1(0.426 \%)$	$44(18.7 \%)$	$70(29.8 \%)$	$109(46.4 \%)$
After cuts	$1(0.472 \%)$	$37(17.5 \%)$	$67(31.6 \%)$	$96(45.3 \%)$

nc	No-pion	1 piO	I pi+-	n pi
Generated	O(0\%)	13(1.89\%)	0 (0\%)	675(98.1\%)
Scanned	0 (0\%)	12(9.84\%)	O(0\%)	110(90.2\%)
After cuts	0(0\%)	7(15.9\%)	0(0\%)	37(84.1\%)

Composition of Ve-CC and NC Samples $4 \leq$ Evis $\leq 8 \mathrm{GeV}$

What Makes The Background?

Visible Energy	$1.5 \sim 4$	4~8	Sum
$1 \mathrm{e} / \mathrm{Y}$ ring	164	137	301
$2 \mathrm{e} / \mathrm{\gamma}$ rings	28	31	59
$1 \mathrm{e} / \gamma$ ring $+1 \pi$	39	44	83
Sum	231	212	443

nc			
Visible Energy	$1.5 \sim 4$	$4 \sim 8$	Sum
I γ ring	48	3 I	79
2 Y rings	6	6	12
I γ ring + I π ring	6	8	14
Sum	60	45	105

- 80% of the nc background have I_{γ} ring ($1.5 \sim 4 \mathrm{GeV}$).
- The other γ ring from $\pi 0$ decay is either too weak or overlapping with the leading ring.

