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Accelerator upgrade

At SuperKEKB, we increase the luminosity based on
“Nano-Beam” SCheme, which was originally proposed for SuperB by P. Raimondi.

SR
L = Y+ 1+ 0-3: '\[5”5;)’ Ry
2er, Oy v, \ Ry

— Vertical B function at IP:

5.9 mm = 0.27/0.30 mm (x20)
— Beam current:

1.7/1.4 A > 3.6/2.6 A (x2)

Luminosity Gain

- L=2x10%*-> 8x10%* cm?s1 (x40)
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Beam crossing angle
and final focusing magnets
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e Larger crossing angle: 22mrad—>83mrad

* Final Q for each ring—> more flexible optics design

* No bend near IP=> less emittance, less background
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Interaction region design
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IP beam pipe design
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e Use shorter Be part

(within acceptance)

e Gold plating (10um) to stop
Synchrotron radiation

e Coolant (Paraffin, n=10)
flow for wall current heat

* Allow Paraffin and vacuum
to touch both side of welding
- shorter and simpler Be
shape (less expensive)
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Background sources at SuperKEKB

Background from scattered beam particles
Background from physics processes

Background from synchrotron radiation
etc..



Background sources
~1. Scattered beam particles™

Touschek scattering

— Intra-bunch scattering, Rateoc (beam size),(E,..,)>
— Most dangerous background at SuperKEKB, Ei"lr”'
hET

since beam size is x20 smaller (“Nano-beam scheme”)

Beam-gas scattering

— Scattering by remaining gas, Rate oc|xP

_ . . . . e:t N i
Vacuum level at SuperKEKB will be similar to KEKB, O%.\Ei e =
so less dangerous compared to Touschek scattering L O

— Vacuum level in IR region could be worse than KEKB, but particles scattered in
IR region will be lost far downstream IP and will not be dangerous for the
detector



Touschek/beam-gas background

it IR beam pipe.
ly EM shower
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Countermeasures

Collimators in the ring Heavy-metal shield
— Horizontal collimation from both — Placed outside IR beam pipe
inner/outer sides (+- ~12mm) — Protect inner detector from EM
— Stop off-momentum e+/e- shower created by loss particle

before reaching interaction region

A IHNITIA

Pair-type

N
Tapered pipe Cooling water "
©90 p pip \K\
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Loss position of
LER Touschek background

-45

4

LER Touschek loss positions with
all horizontal collimators closed
(0.9GHz e+@1.2m from IP)
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Simulated background hits on PXD
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Neutron flux from LER Touschek
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0.9GHz e+ |

s s

3Im
* Vs in showers hit nuclei and generate 1~2 neutrons per e+ via "Giant Dipole Resonance”.
e e+ hitting point is INSIDE detector. Almost no space to put neutron shield.
* 0.9GHz e+ = few*101/cm2/year neutrons (1MeV equiv.):

— comparable to our assumption for detector R&D
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Background sources (cntd.)
~2. Luminosity dependent”™

< . e~
Radiative Bhabha
— Rateoc Luminosity (KEKBx40)
- o ~ 50 nb

— EM shower from spent e+/e-: e/\>
L’L—L

hit position is very far (~10m) from IP,

— Neutrons from emitted Y (hitting downstream magnet) °Snaeha scattering

Need to increase neutron shields in the tunnel

2-photon process L7

— Generated e+e- pair might hit PXD £ } s

— Confirms to be OK, according to KoralW - = 7
e/\ o ~ O(10" nb)

2-photon-processes

simulation and KEKB machine study

“0.2%(<<2%) occupancy on PXD”




Radiative Bhabha

Emitted gamma hit magne
at ~10m downstrea
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Additional neutron shield
around radiative Bhabha photon dump

Radiative Bhabha rate is x40 higher

than KEKB PR
i_ - d BLORE) ; : B
| \‘M:R f‘fitmb;n (: ° Photon dump
A A4 R~14m
li&] Al | % i =
s @ )

% 7 j‘ g/ /,%L‘ 7 ; /‘é‘/ % :ﬁj

—
Polyethylene shield Additional neutron shield

(10cm) at KEKB around photon dump is necessary

TIPP2011 (June. 11th, 2011) 16

Hiroyuki Nakayama (KEK)



Background sources (cntd.)
~3. Synchrotron radiation®™

Svnchrotron radiation

— Rate o< E2B2: mainly from HER
— Photons are emitted inside upstream final focusing magnet
= hit IP beam pipe (Be) and penetrate = reach PXD/SVD

Back-scattering synchrotron radiation

— At Belle, e+/e- are strongly bent by downstream magnet and emit SR.
These photons hit downstream beam pipe and scattered back to detector.

— At Belle-Il, such strong bend does not exist. We don’t have to worry
about this background.



Beam pipe design

Collimation
 HER 7 (20mm@>9mma)

Positron

20mma@
Hiroyuki Nakayama (KEK)
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e Collimation part of incoming
pipe stops most of SR.

* The minimum distance of the
duct wall from the beam stay
clear is 2 mm.

* HOM can escape through the
pipes for the outgoing beam.
 “Ridge (saw-tooth)” structure
on inner surface of collimation
part to hide Be pipe from
reflected/scattered SR.

- P—
S
/Ridge gtructure
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Simulation status

Stand-alone simulation with simple geometry
shows ~200/bunch (>5keV) photons hit straight
part of beam pipe, which is far below PXD
requirements.

G 75um silicon

i fr::r:é;o Stopping power:
T 0.6mm Be O(~10'6) for <20KeV
Sde}/ 10 um Gold

x(cm)

: We will simulate again in our full-detector
20mm Dia. \ : : .
simulation framework with exact geometry,
with the leak magnetic field.

9mm
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Summary

 Touschek scattering is most dangerous background
source for Belle-ll/SuperKEKB. Both EM shower and
neutrons from Touschek loss particle should be
carefully examined.

* Preliminary study shows Synchrotron radiation is safe.
This will be updated taken into account the leak field,
mis-alignment, and tip-scattering.

e Radiative Bhabha, 2-photon process might not be a
big problem.
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Simulation status summary

Sowce Jcomment

Touschek

Neutrons from
Touschek loss

Beam-gas

e+/e- from
rad. Bhabha

Neutrons from
rad. Bhabha

2-photon
process

SR

Beam-beam

Hiroyuki Nakayama (KEK)

0.9GHz loss from LER in IR region. This is tolerable for PXD/SVD. Impact on outer
detector is being simulated. Rate from HER is also being simulated.

~2GHz from LER: Comparable to detector assumption (~10!/cm2/year at 1m away
from source point). Very difficult to shield. Rate from HER is under simulation.

KEKBx2: OK. Much less than Touschek

OK: Loss position is far enough(~10m downstream), thanks to individual final Q
magnet.

KEKBx40: Generated at ~10m downstream.
We should increase neutron shields in the beam tunnel.

OK: Simulated PXD occupancy is small enough: 0.2%(<<2%) (using BDK/KoralW).
Simulation is confirmed by KEKB machine study.

OK: Simple simulation has already shown it’s OK. Leak field impact should be updated.
Tip-scattering beam test is planned.

Accelerator group are now investigating.
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backup
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Primary Target of KEKB/Belle

... was to confirm Kobayashi-Maskawa mechanism.
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The last beam abort of KEKB on June 30, 2010
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Luminosity

SuperKEKB Luminosity

Peak lumonisity trends (e+e- colliders) SuperKEKB
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Simulation framework

Touschek/beam-gas generator: SAD or TURTLE
Radiative Bhabha generator: BHWide, BBBrem
2-photon process generator: BDK or KoralW
Synchrotron radiation generator: GEANT4

Detector responses full simulation: GEANT4



Collimator width

How narrow we can collimate the beam without losing lifetime?

The minimum width dx is given by:

d, =MaxXd,;.d,,]
dx[)’ = nx gxﬁx’ dxn :”x(nzaé)
Or, use this value to be conservative

mr QC2 beam-pipe equivalent

d 'x’B —
QC2 . i
lBX,QCZ radius at mask position

For SuperKEKB LER,
nx= 30/ nz= 22: SX =3.2 nm, 05 = 0.00080
roc2 = 35 mm, B, o, = 424 m (at QC2RP2216)

For SuperKEKB HER,
n,=15,n,=14, € =4.3 nm, 5= 0.00066

roc =40 mm, B, e, = 974 m (at QC2LE3060)
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LER collimators
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LER collimators . -vew, ¢

- _[B
dp =nEB,, g = [~

r C2
ﬂx,QCZ ©
dxq =/7x(nza5)
Based on lerfqglc1427

upstream L8P.13 (near SFANLP.1 956.17 3.20 24.37 14.00 12.34
H2 upstream of L8PMH1.1 (near PMDO6H1 ) 1710.94 2.87 24.33 0.70 2529 8.37 12.31 8.38
H3 upstream  of L8P.32 (near SF40LP1 ) 2463.72 3.20 24.37 0.70 36.11 8.38 12.34 8.39
H4 downstream of -L8PMHD3.4 (near -PMDO3H4 ) 2813.88 2.53 24.30 0.70 4145 8.37 12.28 8.38
H5 downstream of LLASR (near -BLA6RP.1 ) 2872.80 5,57 51.94 0.74 4229 12.23 12.98 12.25
H6 upstream  of LLB3R (near BLB3RP ) 292791 7.91 96.47 0.50 4326 16.67 8.83 16.70
H7 downstream of LLB2R (near QLB2RP ) 2947.61 11.20 31.98 -1.00 4342 9.60 17.60 9.61

H8  upstream of LLC2R (near PQLC2RC ) 2998.47 3.52 47.82 -0.70 4425 11.74 12.34 11.75

H5 might be removed, since it stops almost nothing.
29



LER Touschek loss positions
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Neutron energy spectrum
(at generated point)

“QGSP_BERT” “HLEP”
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Neutron kinematic energy is “~5MeV.
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Neutron displacement damage on Si

Neutron induced displacement damage in Silicon
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A Vasileseu & G. Lindsoroem

Displacement damage on Silicon by few MeV neutron is
about twice larger than the damage by 1MeV neutron
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Beam test for tip-scattering SR

Ridge (saw-tooth) structure avoid reflected X-ray to hit
the straight part of beam pipe, but “tip-scattered” X-rays
might create additional hits.

Ridge (saw-tooth)
structure avoid
reflected SR to hit IP
beam pipe

Hiroyuki Nakayama (KEK)
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distribution
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Gamma from radiative Bhabha

Measured at KEKB. At SuperKEKB, 40 times severer.

1.5 1.8 2.2 1.6 fast neutron
iy I I IO e (S V/21V2K)

FIG. 1: Measured radiation levels around the beam lines in the HER downstream of the Belle detector.
Neutron dose rates were measured outside of the concrete shield in 2003. The electromagnetic (EM) shower
rates were measured with a scintillation counter in the same year. The position resolution of a movable EM
shower counter 1s a 150 mm diameter circle along the beam lines; the counter 1s surrounded by a 200 mm
thick lead shield and has a window diameter of 20 mm. 1Gy=1J/kg
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Neutron shield @ KEKB

Concrete wall
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Heavy-metal shield




Background sources (cntd.)
~4. beam-beam interaction”™

Beam-beam interaction

— Scattered at IP, by field of the other beam

— Beam shape has non-Gaussian tail 2 might increase SR background
— Multi-body effect, not easy to calculate analytically

— Being simulated by accelerator group




