
The LHCb Velo Upgrade

Daniel Hynds On behalf of the LHCb Velo Group

LHCb at a glance....

- Heavy flavour physics experiment at the LHC
 - Studies of b- and c-quark decays, New physics via CP violation, rare decays....
- High correlation of b-quarks in rapidity => forward arm spectrometer design
- b-quark mesons typical decay length ~ 1cm => vertexing critical to identify PV
- Main requirements/features:
 - Excellent vertex resolution
 - Excellent PID
 - Efficient triggering and tracking

June 2011

The VErtex LOcator

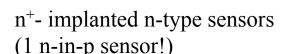
Silicon strip detector with back to back modules - strips in radial and angular directions

Projected angle 0-4 degrees

Projected angle 7-11 degree **Binary Resolution**

Strip Pitch [um]

- Highest resolution vertexing at LHC!
- Demanding requirements
 - Proximity to proton beams (7mm)

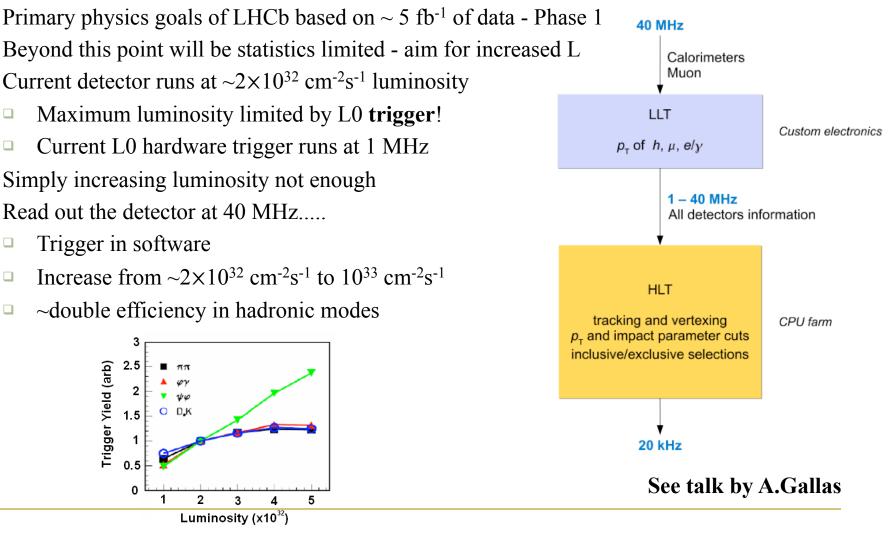

Resolution [µµ] 30 30

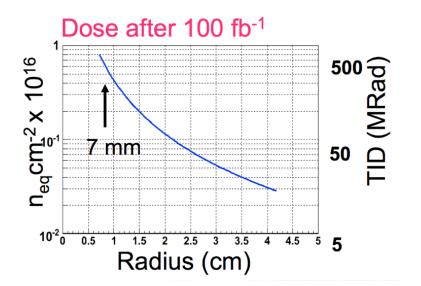
20

- High radiation environment
- Detector sits in vacuum
- The whole thing **moves....**

- n⁺- implanted n-type sensors (1 n-in-p sensor!)
- Proper time resolution ~ 40 fs
- IP resolution $\sim 13 + 25/p_T \mu m$

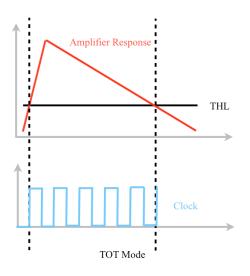
See talk by T.Latham




Beyond the current detector...

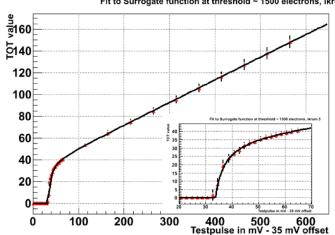
Moving Velo into the future

- Current Velo not suited to upgrade scenario
 - 40 MHz readout
 - Radiation tolerance (thermal runaway)
- Large parts of the current Velo can be kept:
 - CO₂ cooling plant
 - Mechanics
 - HV and LV systems
- However.....
 - Silicon modules must be replaced rad. hard to $> 5 \times 10^{15}$ 1 MeV n_{eq}cm⁻²
 - FE electronics upgraded to 40 MHz readout
 - New module geometry => new RF foil design
 - Aim for low occupancy



ASIC baseline - Timepix

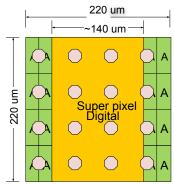
- Development from Medipix collaboration
 - Return to HEP from medical physics
 - Velopix, Clicpix, Time projection chips.....
- Pixel ASIC with shutter-based readout
- 256×256 pixel matrix with 55µm pitch



- Several operating modes:
 - Particle Counting (Medipix)
 - Time of Arrival (TOA)
 - Time over Threshold (TOT)

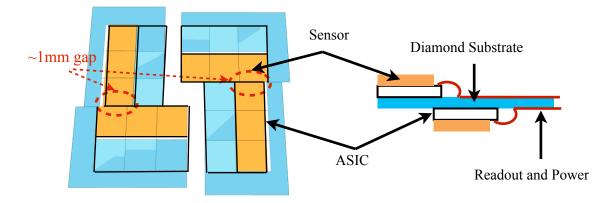
From Timepix to Velopix

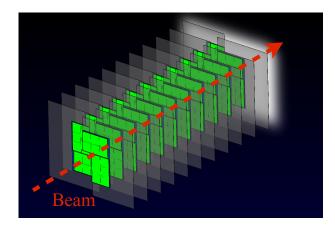
- Much more stringent requirements on Velopix
 - Replace shutter based readout with data-driven (ZS) readout
 - Reduce timewalk < 25ns (1000e⁻)
 - Include TOA and TOT
 - Lower (~500e⁻) threshold
 - Reduced non-linearity near threshold
 - Cope with anticipated particle flux in the upgraded LHCb
 - Keep data loss < 0.5%
 - Data rate critical!!
- An ambitious project! Still much to do....
 - Main constraints will be power and data flow



Data rates

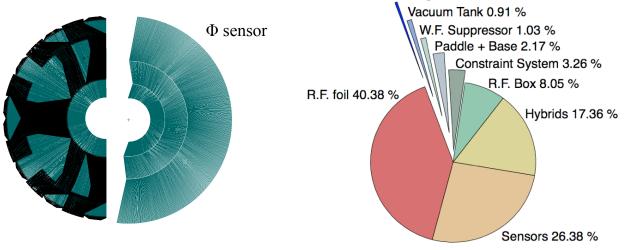
- Particle rate for chips closest to beam ~ 6 particles / bunch crossing
 - Average 2 pixels per hit, 32 bits per pixel read out (16-bit ID, 12-bit BCID, 4-bit TOT)
 - $6 \times 32 \times 2 \times 40$ MHz gives data rates of almost 15 Gbit s⁻¹!!
- Biggest challenge to Velopix manageable data flow!
- Super Pixel Packet format proposed group together clusters of 4×4 pixels to create Super Pixels
 - Share time-stamping information (crossover of digital regions)
 - Save ~ 30% bandwidth
 - Still requires several multi-gigabit readout links
- Challenge to divide work between FPGA readout and ASIC logic
- Current questions:
 - Can we specify stream sizes to reduce workload on DAQ system?
 - How much information should we decode for trigger pattern recognition stage?
 - Is it worth making life difficult on-chip? Yes, power needs to stay < 1 W/chip



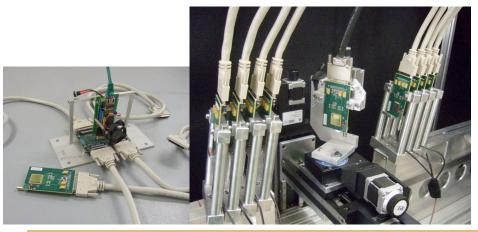


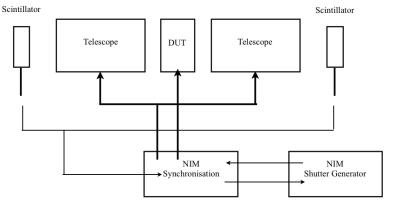
Proposed module design

- Each Velo half to consist of 12 ASICs in 2 staves
- Each stave consists of:
 - CVD diamond support structure (essential high thermal conductivity)
 - Front- and back-mounted tiles of 3 ASICs with sensors bump-bonded on top
 - Readout and power traces on the substrate
 - Minimise radiation length



Strip sensor option

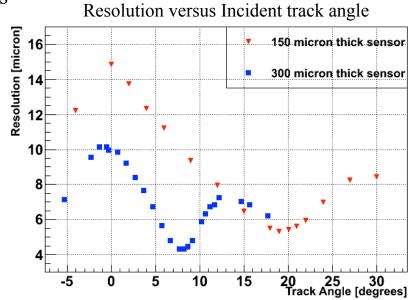

- Background development of strip sensor option
 - Should pixels exceed power/material restrictions
- Still challenging work to
 - Keep strip capacitance low
 - Increase number of strips aim for occupancies < 0.5%</p>
 - Radiation hardness and performance n-on-p sensor baseline
 - 40 MHz readout chip still to be developed, overlap with LHCb Silicon Tracker upgrade program
 Cooling Block 0.46 %
 - Reduce X₀



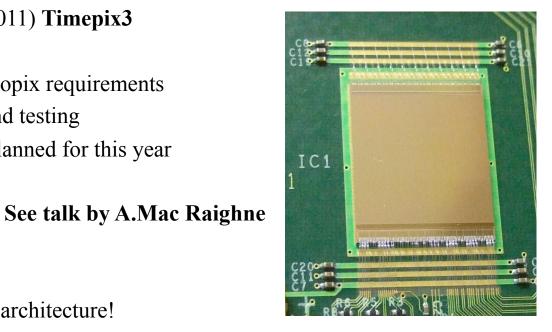
Timepix telescope

- 8 telescope planes, 7 in TOT mode and the other in TOA
- NIM crates providing shutter logic (coincident scintillator hits)
 - 40MHz-synchronised triggers
- FPGA based readout RELAXd
- From "what if....?" to world class telescope in less than a year!
 - $\sim 1 \mu m$ resolution at device under test
 - ~1ns timestamp
 - > 5 kHz track rate

2009 + 2010 data already published (more to come!) http://arxiv.org/abs/1103.2739


The LHCb Velo Upgrade - TIPP 2011

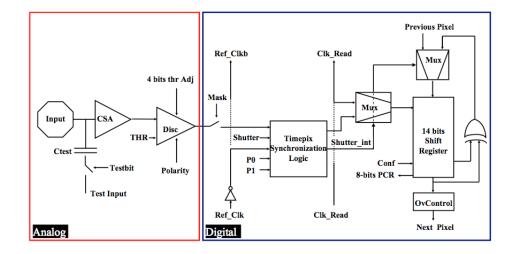
Timepix for tracking



- Timepix performance comparable to current Velo sensors
- Resolution with TOT better than binary resolution (aim for min. 4 bit TOT)
- Extensive studies on charge sharing
 - Angular dependance of resolution
 - HV dependence
 - Sensor thickness

Looking to the future...

- Latest chip from Medipix collaboration Medipix3
 - Similar to Medipix2 no TOT, TOA
 - 2 threshold counters per pixel, *limited* charge discrimination
 - Group 4 pixels together to gain 3 bit TOT!
 - Radiation hard, 130nm process => sensor irradiation studies!
- Next step (submission ~end of 2011) Timepix3
 - Simultaneous TOT and TOA
 - Analogue FE identical to Velopix requirements
 - Real prototype production and testing
- Many irradiated sensor studies planned for this year
 - n-on-p
 - Double sided 3D
 - Diamond sensors
 - Guard ring designs
- Finalise decisions about Velopix architecture!


Summary

- Velo upgrade program well advanced and ambitious
- Velopix baseline pixel ASIC, strip option still realistic alternative
- Challenges "manageable" (ask us in 2 years!!)
 - Radiation hardness comparable to requirements on other LHC experiments
 - Power consumption must be kept low
 - Data rates must be fine tuned and workload sensibly distributed
- Project independent of LHC upgrades!

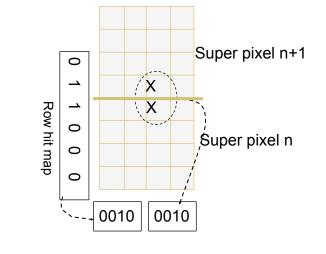
Backup

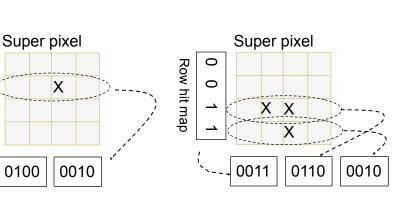
Data reduction schemes

- Unformatted:
 - 16 bit pixel address
 - 12 bit bunch ID
 - 4 bit TOT
 - 32 bits per pixel!
- Using SPP format:
 - Fixed 30 bit header (BCID, super pixel ID, row hit map)

Row hit map

0

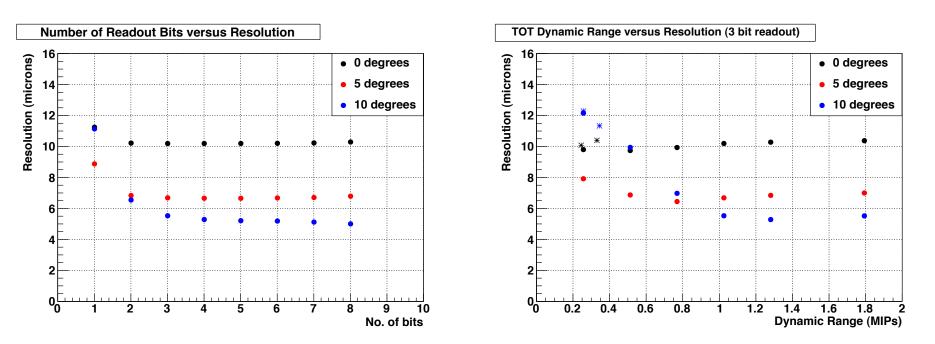

~


0

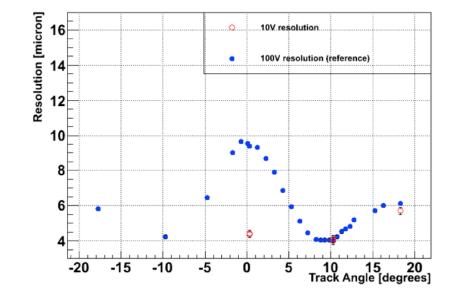
0

0100

- Variable length column hitmap with TOT
- Share information across row boundaries of super pixels
- Bandwidth reduction $\sim 30\%$



Design lessons for Velopix



- For single hit clusters no need for TOT
- On multi-pixel clusters TOT essential for accurate reconstruction
 - Study into TOT requirements for Velopix front end
 - Necessary to tune preamplifier response, etc.

Bias voltage

