

ENHANCED LIGHT COLLECTION FOR A WATER ĈERENKOV DETECTOR AT LBNE

Norm Buchanan

Colorado State University (On behalf of the LBNE Light Collector Group) June 12, 2010

Technology and Instrumentation in Particle Physics TIPP 2011

Long-Baseline Neutrino Experiment

- Wide-band neutrino oscillation experiment between FNAL and Homestake, SD.
- Physics goals include measurement of CP violating phase δ_{CP} , precision measurement (or discovery) of θ_{13} , SN burst neutrinos, etc...

- Two detector technologies under study for use in far detector
 - 200 kton Water Cerenkov at 4850' depth
 - 34 kton Liquid Argon TPC at 400' level

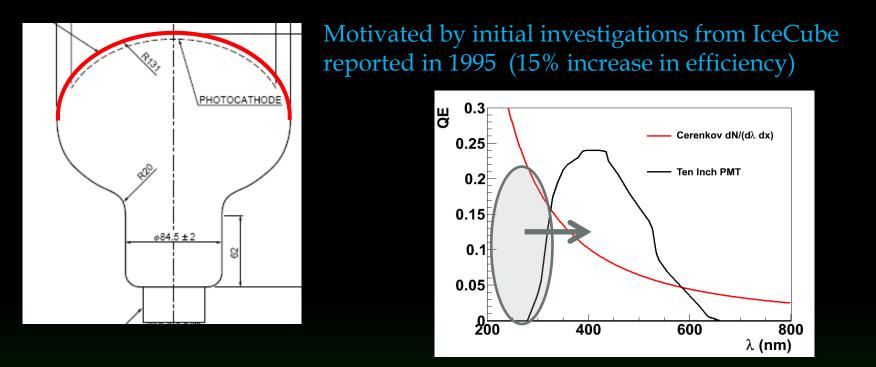
Motivation

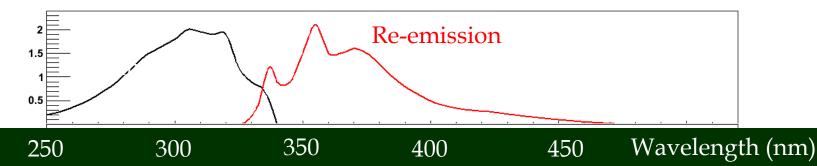
• PMTs significant portion of LBNE WCD total cost

- PMT (+Base) cost (estimate): ~\$3000/channel
- Additional costs for cabling and mounting

Geometry	Fiducial Vol. (kT)	Coverage (%)	# PMTs	Per channel Cost (M\$)
Right cylinder	100	20	57,129	171.4
Right cylinder	150	20	73,012	219.0
Right cylinder	200 (2 x 100)	20	114,258	342.8
Mailbox	150	20	84,466	253.4

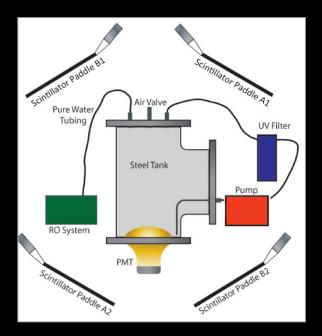
Eg. LBNE far detector with 20% coverage. PMT numbers (not costs) taken from John Felde (UC Davis) for LBNE far detector simulation (cost estimates and coverage #s for illustrative purpose only)


- Even 10% less PMTs leads to significant cost reduction.
- Improved light collection efficiency is potential solution other experiments have used or studied possible approaches
 - Reflective cones (used in SNO)
 - WS plates (used in IMB, and SuperK outer detector)
 - WS PMT coatings investigated for IceCube


Investigating Three Options

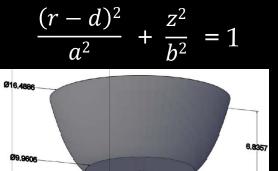
- Wavelength-shifting coating on PMT face
 - investigated for IceCube
 - shifts Ĉerenkov spectrum into PMT detection spectrum
 - can be used with other light collection methods
- Wavelength-shifting plate
 - used in IMB (and outer detector of Super Kamiokande)
 - very configurable (dopant, thickness, radius)
 - relatively easy to manufacture can be cast in desired shape
- Reflective Winston cone
 - used in SNO (heavy water D_2O)
 - minimal wavelength dependence
 - reflected light doesn't introduce delays

Cost of both WS plate and Winston cone ~\$100/unit


WS Films *Xin Qian et al (Caltech)*

5

WS Film R&D



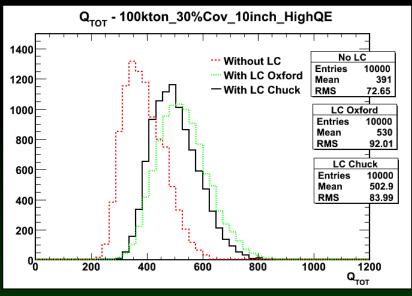
- WS film added to PMT face achieves an increase in light collection of about 11%
- The nature of the WS film allow it to be combined with the either of the other approaches so R&D focus has moved to the reflective cones and WS plates.

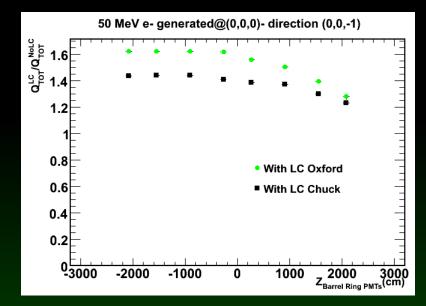
Reflective (Winston) Cones

Al coated protot

Jelena Maricic et al (Drexel)

(ellipse with semi-axes a,b centered on (d,0) in r-z plane) Uses off-axis parabola to re-direct photons missing PMT onto photocathode


(2 prototypes with slightly different shapes examined)

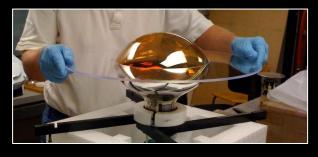


Studies on Prototypes

- Simulation (WCSim) with Winston cone reflector shows 50% increase in light collection
- Increasing the size of the Winston cone can increase collection enhancement
 - Need to balance increase light collection with reduction of fiducial volume when increasing size of cone.

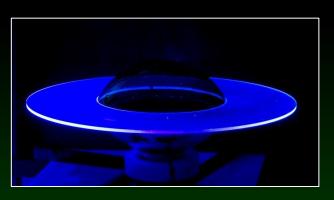
Collected Charge

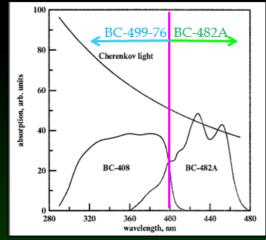
Fractional improvement vs Z pos.

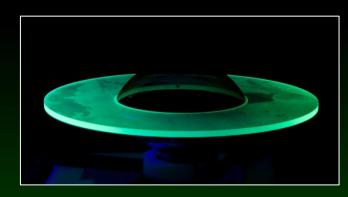

WS Light Collector Plates

Norm Buchanan et al (CSU)

<u>Prototype 1 (BC-499-76)</u>

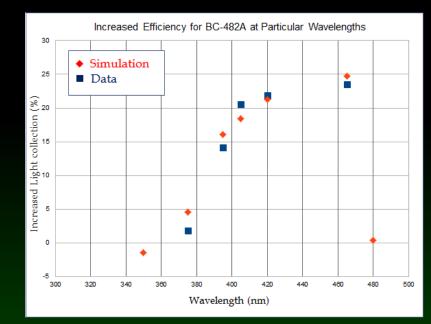

 $UV \rightarrow blue$ ID: 10", OD 20", 5 mm thick Polyvinyl toluene (PVT) base Fluor: POPOP + ?? Index of refraction = 1.58 Density = 1.04 g/cm³ Decay time = 2.1 ns Vendor: Saint-Gobain


PMT area: 78.5 in² Plate area: 235.6 in²



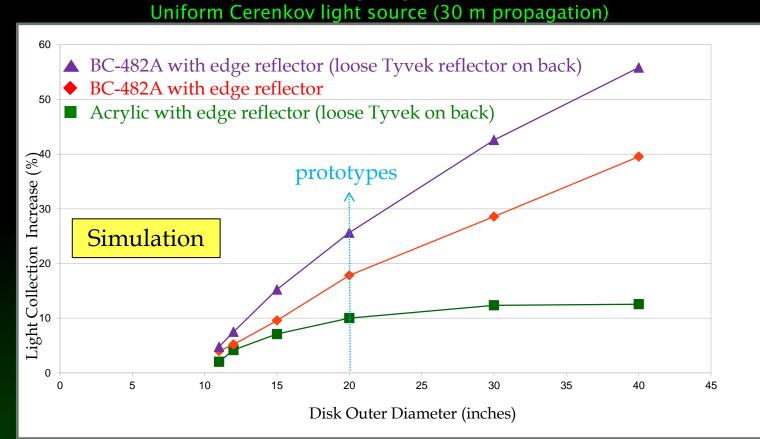
Prototype 2 (BC-482A)

blue \rightarrow green ID: 10", OD 20", 10 mm thick Polyvinyl toluene (PVT) base Fluor: BBQ? Index of refraction = 1.58 Density = 1.04 g/cm³ Decay time = 12 ns Vendor: Saint-Gobain

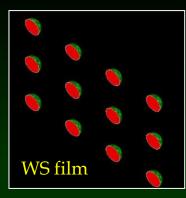


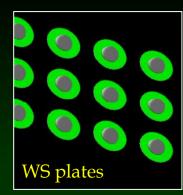
Studies on Prototypes

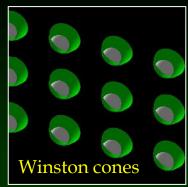
- Due to the nature of the WS plastic (very different absorption/emission spectra) two experimental setups are being used to study the prototypes.
 - "Green" prototype studied in a dark barrel with various LEDs
 - "Blue" prototype studied in a large water Ĉerenkov tank (Auger tank)
- Tests on green prototype show good agreement between data and simulation
- Tests on blue prototype in WC facility just getting underway (results soon)



Tank for Cerenkov facility (May 2011)


Improvement with Disk Size


One of the two handles we have for improving the collection performance of the system is the diameter of the disk. Building a scanner to help characterize the effect of the radial location on collection efficiency and timing degradation



Simulation

- Simulation of devices and physics critical
 - important to understand the physical characteristics of devices (optical, timing) in order to have accurate physics simulation
 - all 3 technologies have been added into the full simulation of our WC detector (WCSim)
 - stand alone Geant4 simulation of WS plates used in conjunction with the lab testing
- What are the effects on the physics potential of LBNE?
 - is reconstruction compromised?
 - is π^0 /electron separation measurably impacted
 - are we sending light back out into the active volume?

LC Geometries in WCSim

Outstanding Questions

- Reflective Winston cones
 - What is the effect on fiducial volume?
 - How does efficiency look at top/bottom of tank (angular dep.)?
 - How to they hold up in ultra-pure water at high pressure?
- WS plates
 - What is the effect of timing on physics?
 - Are reflections a problem? Can we deal with them algorithmically?
 - How to they hold up in ultra-pure water at high pressure?
- WS films
 - How can the films work together with other technologies?
 - How will they hold up in ultra-pure water at high pressure?

Summary

- Three light collection enhancement technologies candidates for potential use in a WC far detector at LBNE
- Prototypes in hand for all three technologies and studies ongoing
- Simulation work in parallel to answer critical physics questions
- Moving toward a choice of a baseline technology this year

• Working hard to ensure any chosen technology improves LC efficiency without destroying the physics potential of the experiment

THANK YOU!