

Introduction to PANDA Trigger and Data Acquisition System

Hao Xu

Hao.Xu@ihep.ac.cn

Institute of High Energy Physics, CAS, China

for the PANDA Collaboration

TIPP11 Conference Chicago, USA June 8-14, 2011

Agenda

- PANDA@FAIR overview
- The trigger-less DAQ system for PANDA
- DAQ demonstrator system for EMC
- Summary

Agenda

- PANDA@FAIR overview
- The trigger-less DAQ system for PANDA
- DAQ demonstrator system for EMC
- Summary

FAIR: Facility for Antiproton and Ion Research

High Energy Storage Ring

Parameter

- Injection of pbar at 3.7
 GeV
- Slow synchrotron (1.5-15.0 GeV/c)
- Storage ring for internal target operation
- Luminosity up to L[~]
 2x10³² cm⁻²s⁻¹
- Beam cooling (stochastic & electron)

Physics Program

Charmonium Spectroscopy

Precision Spectroscopy Study of Confinement Potential Access to all these puzzling X,Y,and Z

Nucleon Structure

Generalized Parton Distribution Timelike Form Factor of the Proton Drell-Yan Process

Charm in Medium

Study in-medium modification of Hadrons

Search for Exotics

Look for Glueballs and Hybrids Gluon rich environment Disentangle Mixing via PWA

Nuclear structure Baryon-Baryon interaction in SU(3)_f H-dibaryon

PANDA Detector

Agenda

- PANDA@FAIR overview
- The trigger-less DAQ system for PANDA
- DAQ demonstrator system for EMC
- Summary

The Trigger-less DAQ

BESIII ATLAS, LHCb PANDA

Trigger-less DAQ

- No external signal to initiate readout
- Continuous sampling readout
 - Front-End identify detector signals
- Event selection: Online Data Processor (FPGA, DSP, CPU,GPU...)
- Advantage
 - No hardware trigger logic
 - Flexible
- Draw backs
 - No event definition at readout stage
 - No T0
 - Higher data rate

Motivation for Trigger-less DAQ

- Wide physics cases different criteria for event selection
- Complicated event selection criteria
 - Identification of short lived particles Impact Parameter
 - photon clusters in EMC with veto of charged particles in front e.g.ηc
 - Electron identification
 - Particle ID in MVD, TPC/Straw detectors (dE/dX)
 - Cherenkov PID
 - − ∧ reconstruction
 - Muon Identification
 - **—** ...

Almost every detector is needed for event selection

Design Challenges

- Interaction rates up to 30MHz
- typical event sizes 4 20 kB.
- data rates after front end preprocessing:
 40GB/s 200 GB/s
- high flexibility and selectivity

Data Rate and Event Size

Solution

- continuously sampling data acquisition
- hardware trigger-less
- Precision clock distribution system

- Digital signal processing at FrontEnd level
- Event selection in programmable processing units
- Connection via high speed networks

System Architecture

Processing Steps

Detector Front-ends FEE-Data concentrator

Feature extraction: time &

amplitude

Clusterization

Data Zero suppression

First Stage

Concentrator

Data

"Event" Builder

Burst builder

Combines data : one burst -

one data block

Second Stage

"Event" Builder

Compute

Node

Compute Node, Computer farms

Online data processing

Accept/reject decision

← Data links

Time distribution (via optical link)

R&D Status

Key technologies

- SODA: Synchronization Of Data Acquisition
 - Time distribution system
- Compute Node: the 'heart' of T/DAQ system
 - Event filter/event selection/...

SODA Functionality

- Provision of clock reference < 20ps
- Synchronization with HESR operation
 - Burst or super burst
- Monitoring status of FE and DAQ components
- Data flow control
 - Define switch topology

SODA Architecture

SODA controller: Broadcast synchronous commands with fixed latency. PCI-express interface to PC

Optical splitter: 1x8; 1x16; 1x32

SODA receiver: Mounted directly on Data Concentrator module

^{*} I. Konorov, "SODA: Time distribution system for the PANDA experiment", Nucclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE

Compute Node

An universal high performance platform prepared for multiple applications .

ATCA standard (Full Mesh topology in backplane) and FPGA-based

5x Virtex-4 FX60-10/-11 FPGA
13x 2/3.125Gbps to backplane
for interconnection
5x Gigabit Ethernet
8x 2/6.25Gbps Optical Links for
data input
2 GB 400MHz DDR2 SDRAM

Real time Linux/vxworks

Hao Xu talk: An ATCA-based High Performance Compute Node for Trigger and Data Acquisition in Large Experiments

Production for Development

- 10 boards production for performance test and Example firmware development
 - 3 boards assembled with virtex4 fx60-11 for SFP+
 - Optical link
 - 6.25Gbps
 - DDR2 SDRAM
 - 200MHz for MPLB
 - 7 boards assembled with virtex4 fx60-10 for SFP
 - Optical link
 - 2 Gbps
 - DDR2 SDRAM
 - 100MHz for MPLB

Agenda

- PANDA@FAIR overview
- The trigger-less DAQ system for PANDA
- DAQ demonstrator system for EMC
- Summary

DAQ Demonstrator System for EMC

- Goal
 - Set up a basic system that can be interfaced to the FEE
 - Input from FEE
 - via optical fibre (2 /6Gbps)
 - GBit Ethernet
- Functionality
 - Up to 8 fibres per CN module
 - up to 14 CN Modules
 - (4+1) V4FX60 FPGAs per CN module
 - Firmware for data transport from FEE and to PC farm
 - Firmware for EMC cluster finding

EMC T/DAQ Schematic

asks

- 1. Signal Feature extraction (Time, Amplitude)
- 2. Data Zero suppression
- 3. Precision time stamp

- 1. Clustering
- 2. Cluster Properties extraction
- 3. Pattern recognition

- 1. Correlation
- 2. Physical parameters calculation
- 3. Event building

Test Setup

Simulation and Off-line Software

- In order to find best event-selection criteria software simulations are required
- Transition of event-based → time ordered Monte-Carlo simulation is necessary
- The PandaRoot is being modified

Summary

- PANDA trigger-less DAQ system is a very challenging and promising development and the only feasible way to achieve physics goals of PANDA experiment
- Implementation of a trigger-less DAQ system requires completely new development of hardware and software
- The ATCA-based Compute Nodes are produced and successfully tested
- The simulation and off-line data-analysis tool-chain is being adapted to the trigger-less DAQ concept.
- The prototype of PANDA EMC Trigger and Data Acquisition System under construction

Thank you for your attention

Who's involved in PANDA?

More than 400 physicists from 53 institutions in 16 countries

U Basel IHEP Beijing

U Bochum

IIT Bombay

U Bonn

IFIN-HH Bucharest

U & INFN Brescia

U & INFN Catania

JU Cracow

TU Cracow

IFJ PAN Cracow

GSI Darmstadt

TU Dresden

JINR Dubna

(LIT,LPP,VBLHE)

U Edinburgh

U Erlangen

NWU Evanston

U & INFN Ferrara

U Frankfurt

LNF-INFN Frascati

U & INFN Genova

U Glasgow

U Gießen

KVI Groningen

IKP Jülich I + II

U Katowice

IMP Lanzhou

U Lund

U Mainz

U Minsk

ITEP Moscow

MPEI Moscow

TU München

U Münster

BINP Novosibirsk

IPN Orsay

U & INFN Pavia

IHEP Protvino

PNPI Gatchina

U of Silesia

U Stockholm

KTH Stockholm

U & INFN Torino

Politechnico di Torino

U & INFN Trieste

U Tübingen

TSL Uppsala

U Uppsala

U Valencia

SMI Vienna

SINS Warsaw

TU Warsaw

Read-out chain concept

Status of development:

- First prototypes of Digitizer available: developed at University of Uppsala
- Data-processing algorithm implemented in VHDL and in the testing/tuning phase
- Optical-link protocols are being developed (hit-data transfer, SADC clock transfer, timesynchronisation)
- First demonstrator ready autumn 2011

EMC Readout

- Continuous data sampling with sampling ADC
- On-line data-processing
 - Digital filtering
 - On-line pile-up recovery
- Hit detection and feature-extraction (energy, timestamp)

