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Dark matter

I We think dark matter exists

I We are looking for dark matter particles



How do we find it?
I WIMPs can scatter elastically with nuclei, and the recoil can be

detected directly
I The energy deposited by dark matter in an elastic collision is
∼10-100 keV

I Looking for a handful of events per year

Integrated rate above threshold, 100 GeV WIMP, σ0 = 10−45 cm2
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detected directly
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COUPP bubble chambers

I Superheated fluid, CF3I or
other

I F for spin-dependent
I I for spin-independent
I Other - e.g. C3F8 for a light

WIMP search

I Particle interactions nucleate
bubbles

I Cameras see the bubbles

I Recompress the chamber to
start over

Water
(buffer)

Propylene Glycol
(hydraulic fluid)

CF3I
(target)



Why bubble chambers?
I A lot of effort goes into discriminating electronic recoils produced

by electrons and gamma rays from nuclear recoils produced by
neutrons and WIMPs

I Xenon S1/S2 discrimination
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Why bubble chambers?
I A lot of effort goes into discriminating electronic recoils produced

by electrons and gamma rays from nuclear recoils produced by
neutrons and WIMPs

I Bubble nucleation depends on both total energy deposited and
the density of energy deposition

I Two thresholds for nucleation: E and dE/dx

I By choosing superheat parameters (temperature and pressure),
bubble chambers are blind to electronic recoils

Test Spacer Spacer



Why bubble chambers?
I A lot of effort goes into discriminating electronic recoils produced

by electrons and gamma rays from nuclear recoils produced by
neutrons and WIMPs



Why bubble chambers?

I Easy to identify multiple
scatter events→ Neutron
backgrounds

I Relatively easy DAQ and
analysis chain

I Two cameras
I Piezo acoustic sensors
I Slow control

I No PMTs, no high voltage



Are there any drawbacks?

I Bubble chambers are threshold detectors - no energy resolution

I Harder to distinguish backgrounds based on spectral information
I Alpha backgrounds were big concern

I Understanding energy threshold - calibrations are complicated
and important

I Bubble chambers are slow - ∼ 30 s of deadtime for every event

I Must keep overall rate low



About those alphas...
I Discovery of acoustic discrimination against alphas (Aubin et al.,

New J. Phys.10:103017, 2008)

I Alphas deposit their energy over tens of microns
I Nuclear recoils deposit theirs in tens of nanometers

I In COUPP bubble chambers, alphas are several times louder

Daughter heavy nucleus
(~100 keV)

Helium nucleus
(~5 MeV)

~40 μm

~50 nm

Observable bubble 
~mm



The COUPP program
I COUPP-4: A 2-liter chamber - shallow site in 2009, at SNOLAB

since September, 2010
I COUPP-60: A 30-liter chamber commissioning at Fermilab, goal

is to move to SNOLAB within a year

COUPP-4 COUPP-60



COUPP-4 at Minos in 2009
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I First demonstration of acoustic discrimination in COUPP bubble
chamber



COUPP-4 at Minos in 2009

I 3 ”WIMP” candidates
I Unvetoed 2 bubble event
I At least 74% alpha discrimination



COUPP-4 at Minos in 2009 (PRL, 106:021303, 2011)



COUPP-4 at Minos in 2009 (PRL, 106:021303, 2011)



COUPP-4 at SNOLAB

I To SNOLAB at 6800 ft below



COUPP-4 at SNOLAB

I To SNOLAB at 6800 ft below



COUPP-4 at SNOLAB
I 17.4 live-days at 7 keV threshold
I 21.9 live-days at 10 keV threshold
I Physics run at 15 keV threshold since February 2, ending June

15
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Commissioning data, 40 C
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Improvements: the ”dytran”
I A fast pressure transducer measures the pressure rise during

bubble expansion
I The shape gives position information
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Dytran trace for bulk event

Quadratic fit

Dytran t0
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I A bulk event is quadratic



Improvements: the ”dytran”
I A fast pressure transducer measures the pressure rise during

bubble expansion
I The shape gives position information
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Dytran trace for surface event

Quadratic fit

Cubic fit
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Improvements: the ”dytran”
I A fast pressure transducer measures the pressure rise during

bubble expansion
I The shape gives position information
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Dytran trace for wall event

Quadratic fit
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Improvements: the ”dytran”
I A fast pressure transducer measures the pressure rise during

bubble expansion
I The shape gives position information
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Improvements: AP
I Larger calibration data set
I Improved handle on frequency vs. position dependence

I Events near the center→ more power at high frequencies
I Events near the walls→ more power at low frequencies
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Status through Jan 6, 2011

I Better separation

I More robust to
bubble position
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Background

AmBe neutron source

146 kg days to Jan 6, 2011



Status through Jan 6, 2011

I 750 alphas -
5.1/kg/day

I > 80% from
222Rn and
daughters

I > 98% alpha
rejection
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Background

AmBe neutron source

146 kg days to Jan 6, 2011

750 alphas



Status through Jan 6, 2011

I Single bubble
background of
∼0.08
events/kg/day

I 2 three-bubble
events in this
dataset confirms
neutron
background
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Background

AmBe neutron source

146 kg days to Jan 6, 2011

750 alphas
12 recoil−like events



Status through Jan 6, 2011

I Piezo-acoustic
sensors made of
lead zirconate
titanate

I Both fission and
(α,n) neutrons

I High pressure
viewport also
contributor



Status through Jan 6, 2011

I Evidence for 2nd
source?

I Clusters of 3
and 5 events in
3 and 9 hours
respectively

I Weighted to
high end of AP
distribution
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146 kg days to Jan 6, 2011
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COUPP-4 at SNOLAB
I Current run ends in less than a week (June 15)
I First direct detection experiment limited by internal neutrons

I A known neutron background that can be removed

PRELIMINARY



COUPP-60 Update

I Commissioning at shallow site last summer and fall
I Achieved background goals

I 2.2 alphas/kg/day, identified by acoustic signature
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COUPP-60 Update
I Commissioning at shallow site last summer and fall
I Achieved background goals

I 2.2 alphas/kg/day, identified by acoustic signature

I ∼1 recoil-like
event/kg/day -
piezos are closer to
the fluid



COUPP-60 Update - Chemistry issues

I Fluid turned red due to the
release of iodine

I Photodissociation
I Impurities

I Recreated on test stand
I Solutions to be tested on new

commissioning run this month

I Sodium sulfite in water to
draw out iodine

I Infrared illumination to limit
photodissociation



COUPP-60 Update - Chemistry issues
I Surface boiling

I Carbon dioxide discovered in post-run fluid analysis
I New purification step using molecular sieve and SAES getter

produces levels comparable to current, stable COUPP-4 run at
SNOLAB



COUPP-60 Plans

I Second commissioning run beginning this month
I Demonstrate stability of optics
I Absence of surface boiling?

I If not, still work to do on understanding chemistry

I Begin move to SNOLAB
I Study of safety requirements
I Replace high radioactivity components
I Pack up and move



Other considerations
I Calibrations - we need a better understanding of our threshold

and efficiency

I Comparing rate of single and multiple bubble events from a
calibrated neutron source with MC simulation

I Agreement with theory at high temperatures (44 C)
I ∼ 50% efficiency between 30 and 40 C
I Can fit data with wide range of efficiency curves
I What other calibrations can we do?



Other considerations
I Calibrations - we need a better understanding of our threshold

and efficiency

I Test chamber at Argonne for
neutron source studies

I Pion scattering at test beam
at Fermilab

I Gamma-n reaction using High
Intensity Gamma Source at
North Carolina



Conclusions

I COUPP-4 producing strong results
I Approaching the world leaders in spin independent sensitivity
I Clear way forward on current limiting backgrounds
I Potential to address light WIMP controversy with low threshold

running
I COUPP-60 slowly getting to SNOLAB

I Testing solutions for limiting problems
I Moving to SNOLAB as soon as possible

I Calibration efforts ongoing



Conclusions

PRELIMINARY
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