Searching for dark matter with COUPP

Hugh Lippincott for the COUPP Collaboration

June 11, 2011

TIPP Chicago, IL

The COUPP Collaboration

Kavli Institute for Cosmological Physics At THE UNIVERSITY OF CHICAGO

- University of Chicago: Juan Collar (PI, spokesperson), C. Eric Dahl, Drew Fustin, Alan Robinson
- Indiana University South Bend Ed Behnke, Joshua Behnke, Tonya Benjamin, Austin Connor, Cale Harnish, Emily Grace Kuehnemund, Ilan Levine(PI), Timothy Moan, Thomas Nania
- Fermilab: Steve Brice, Dan Broemmelsiek, Peter Cooper, Mike Crisler, Jeter Hall, Martin Hu, Hugh Lippincott, Erik Ramberg, Andrew Sonnenschein, Fermilab Engineers and Technicians
- SNOLAB: Eric Vazquez Jauregui
- Virginia Tech: Shashank Priya

Dark matter

- We think dark matter exists
- We are looking for dark matter particles

How do we find it?

- WIMPs can scatter elastically with nuclei, and the recoil can be detected directly
 - The energy deposited by dark matter in an elastic collision is ~10-100 keV
 - Looking for a handful of events per year

How do we find it?

- WIMPs can scatter elastically with nuclei, and the recoil can be detected directly
 - The energy deposited by dark matter in an elastic collision is ~10-100 keV
 - Looking for a handful of events per year

Integrated rate above threshold, 100 GeV WIMP, $\sigma_0 = 10^{-45} \text{ cm}^2$

COUPP bubble chambers

- Superheated fluid, CF₃ or other
 - F for spin-dependent
 - I for spin-independent
 - Other e.g. C₃F₈ for a light WIMP search
- Particle interactions nucleate bubbles
- Cameras see the bubbles
- Recompress the chamber to start over

Propylene Glycol

 A lot of effort goes into discriminating electronic recoils produced by electrons and gamma rays from nuclear recoils produced by neutrons and WIMPs

Xenon S1/S2 discrimination

 Charge and timing parameters in CDMS

- A lot of effort goes into discriminating electronic recoils produced by electrons and gamma rays from nuclear recoils produced by neutrons and WIMPs
- Bubble nucleation depends on both total energy deposited and the density of energy deposition
 - Two thresholds for nucleation: E and dE/dx
- By choosing superheat parameters (temperature and pressure), bubble chambers are blind to electronic recoils

 A lot of effort goes into discriminating electronic recoils produced by electrons and gamma rays from nuclear recoils produced by neutrons and WIMPs

- ► Easy to identify multiple scatter events → Neutron backgrounds
- Relatively easy DAQ and analysis chain
 - Two cameras
 - Piezo acoustic sensors
 - Slow control
- No PMTs, no high voltage

Are there any drawbacks?

Bubble chambers are threshold detectors - no energy resolution

- Harder to distinguish backgrounds based on spectral information
 - Alpha backgrounds were big concern
- Understanding energy threshold calibrations are complicated and important
- Bubble chambers are slow \sim 30 s of deadtime for every event
 - Must keep overall rate low

About those alphas...

- Discovery of acoustic discrimination against alphas (Aubin et al., New J. Phys. 10:103017, 2008)
 - Alphas deposit their energy over tens of microns
 - Nuclear recoils deposit theirs in tens of nanometers
- In COUPP bubble chambers, alphas are several times louder

The COUPP program

- COUPP-4: A 2-liter chamber shallow site in 2009, at SNOLAB since September, 2010
- COUPP-60: A 30-liter chamber commissioning at Fermilab, goal is to move to SNOLAB within a year

COUPP-4

COUPP-60

COUPP-4 at Minos in 2009

 First demonstration of acoustic discrimination in COUPP bubble chamber

COUPP-4 at Minos in 2009

- 3 "WIMP" candidates
- Unvetoed 2 bubble event
- At least 74% alpha discrimination

COUPP-4 at Minos in 2009 (PRL, 106:021303, 2011)

COUPP-4 at Minos in 2009 (PRL, 106:021303, 2011)

▶ To SNOLAB at 6800 ft below

▶ To SNOLAB at 6800 ft below

- 17.4 live-days at 7 keV threshold
- 21.9 live-days at 10 keV threshold
- Physics run at 15 keV threshold since February 2, ending June 15

- A fast pressure transducer measures the pressure rise during bubble expansion
- The shape gives position information

A bulk event is quadratic

- A fast pressure transducer measures the pressure rise during bubble expansion
- The shape gives position information

A surface event turns over

- A fast pressure transducer measures the pressure rise during bubble expansion
- The shape gives position information

A wall event blows up

- A fast pressure transducer measures the pressure rise during bubble expansion
- The shape gives position information

Improvements: AP

- Larger calibration data set
- Improved handle on frequency vs. position dependence
 - Events near the center \rightarrow more power at high frequencies
 - Events near the walls \rightarrow more power at low frequencies

- > 80% from ²²²Rn and daughters
- > 98% alpha rejection

- Single bubble background of ~0.08 events/kg/day
- 2 three-bubble events in this dataset confirms neutron background

- Piezo-acoustic sensors made of lead zirconate titanate
 - Both fission and (α,n) neutrons
- High pressure viewport also contributor

Evidence for 2nd source?

- Clusters of 3 and 5 events in 3 and 9 hours respectively
- Weighted to high end of AP distribution

- Current run ends in less than a week (June 15)
- First direct detection experiment limited by internal neutrons
 - A known neutron background that can be removed

COUPP-60 Update

- Commissioning at shallow site last summer and fall
- Achieved background goals
 - > 2.2 alphas/kg/day, identified by acoustic signature

COUPP-60 Update

- Commissioning at shallow site last summer and fall
- Achieved background goals
 - > 2.2 alphas/kg/day, identified by acoustic signature
- ~1 recoil-like event/kg/day piezos are closer to the fluid

COUPP-60 Update - Chemistry issues

- Fluid turned red due to the release of iodine
 - Photodissociation
 - Impurities
- Recreated on test stand
- Solutions to be tested on new commissioning run this month
 - Sodium sulfite in water to draw out iodine
 - Infrared illumination to limit photodissociation

COUPP-60 Update - Chemistry issues

- Surface boiling
 - Carbon dioxide discovered in post-run fluid analysis
 - New purification step using molecular sieve and SAES getter produces levels comparable to current, stable COUPP-4 run at SNOLAB

COUPP-60 Plans

Second commissioning run beginning this month

- Demonstrate stability of optics
- Absence of surface boiling?
 - If not, still work to do on understanding chemistry
- Begin move to SNOLAB
 - Study of safety requirements
 - Replace high radioactivity components
 - Pack up and move

Other considerations

- Calibrations we need a better understanding of our threshold and efficiency
- Comparing rate of single and multiple bubble events from a calibrated neutron source with MC simulation
 - Agreement with theory at high temperatures (44 C)
 - $\blacktriangleright~\sim 50\%$ efficiency between 30 and 40 C
 - Can fit data with wide range of efficiency curves
 - What other calibrations can we do?

Other considerations

 Calibrations - we need a better understanding of our threshold and efficiency

- Test chamber at Argonne for neutron source studies
- Pion scattering at test beam at Fermilab
- Gamma-n reaction using High Intensity Gamma Source at North Carolina

Conclusions

COUPP-4 producing strong results

- Approaching the world leaders in spin independent sensitivity
- Clear way forward on current limiting backgrounds
- Potential to address light WIMP controversy with low threshold running
- COUPP-60 slowly getting to SNOLAB
 - Testing solutions for limiting problems
 - Moving to SNOLAB as soon as possible
- Calibration efforts ongoing

Conclusions

