Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants By **Syed Javed Arif Department of Electronics Engineering**, A.M.U., Aligarh, India 1

CONTENTS

- INTRODUCTION
- THEORY
- REALIZATION
- EXPERIMENTAL RESULTS
- A. When the vibration system is stationary
- B. When the system starts vibrating
- CONCLUSION
- REFERENCES

INTRODUCTION

- Earthquake causes
- Heavy Desetruction to Buildings and Structures
- Heavy Economic Losses
- Destruction of Nuclear Power Plants with its Cosequences
- Heavy losses to Human Lives

As an Example Earthquake of

- Japan in 2011 Caused Heavy Destruction and Nuclear Tragedy
- Haity in 2011 Killed nearly230000 people
- Sumatra (Tsunami) in 2004 killed more than 300,000 people in 11 countries

Drawbacks of Existing Methods of Measurement are

- instruments like seismometers Misses the peaks
- Accelerometers, measures only one parameter ie acceleration
- fails to record the peak values of acceleration, displacement, speed & rise time

Drawbacks Continued

 due to poor resolution, it causes problems in the consistent design of nuclear power plants, industrial plants and buildings, resistant to strong earthquakes.

In the proposed method

- A microprocessor based vibration generation system is developed to generate rocking motion and vibrations.
- The vibration system vibrates the rotor of synchro back and forth, which ultimately varies the frequency and voltage in the rotor circuit.
- It gives the spectrum of pulses which corresponds to the velocity of seismic vibrations.

THEORY

• The speed of Rotor of Synchro is given by

100 f

$$n_s = \frac{120 f_s}{P}$$

and
$$f_r = f_s \mp \frac{n_r P}{120}$$

REALIZATION

Microprocessor based vibration generation and measurement setup

REALIZATION CONTD

Single-phase to three-phase voltage conversion system

Measured waveforms V_A , V_B , V_C at the output of power amplifiers (CH#1, CH#2 and Ch#3).

Measured three phase voltages, V_A , V_B , V_C at stator winding of synchro (CH#1, CH#2 and Ch#3). V_r , f_r (CH#4).

EXPERIMENTAL RESULTS When the vibration system is stationary

Measured output of rotor, $V_{r_r} f_r$ of synchro, S (Ch#4) and Output of ZCD, V_R , f_R (Ch#1) at 50 Hz.

Output of G-1, $T_{WG-} = 0$

Waveforms of signals, $V_{R_{,}} Q$, Q' and output $T_{WG_{-}}$, when the vibrating system is stationary.

Measured output of ZCD, V_R (Ch#1), output of OS Q⁷ (Ch#2), output of gate G-1, T_{WG_-} (Ch#3) at 50Hz and output of synchro Vr (Ch#4) when the vibrating system is stationary.

When the system starts vibrating

Waveforms of signals $V_{R_{,}}$ Q, Q' and output $T_{WG_{-}}$, when vibration is started.

TABLE 1 RESULTS OF THE VIBRATION MEASUREMENT

S.No	$T_{WG-}(\mu s) =$	Velocity of	Acceleration
	T_{WR+} - T_{WQ-}	Vibrations	$(\mathrm{cm/s^2})$
		(cm/s)	
1	0	0	0
2	153.66	4.29	214.5
3	360	9.94	282.5
4	455	12.45	125.5
5	520	14.15	85
6	1000	26.03	594
7	1600	39.52	306
8	554	-15.02	-225
9	400	-11	-201
10	320	-8.86	-107
11	160	-4.49	-218.5

Output of ZCD (Ch#1), output of OS (Ch#2) and output of gate G-1 (Ch#3) in roll mode at 400ms.

Output of ZCD (Ch#1), output of OS (Ch#2) and output of gate G-1 (Ch#3) in roll mode at 400ms.

Measured Output of ZCD (Ch#1), output of OS (Ch#2) and output of gate G-1 (Ch#3).

Measured Output of ZCD (Ch#1), output of OS (Ch#2) and output of gate G-1 (Ch#3).

Measured Output of ZCD (Ch#1), output of OS (Ch#2) and output of gate G-1 (Ch#3).

Measured Output of ZCD (Ch#1), output of OS (Ch#2) and output of gate G-1 (Ch#3

Measured Output of ZCD (Ch#1), output of OS (Ch#2) and output of gate G-1 (Ch#3

Experimental setup for the measurement of velocity and acceleration

CONCLUSION

 A novel synchro and RMF based seismic vibration measurement technique is proposed

• Provides high accuracy and resolution.

proposed method measures the vibrations with a resolution of 20 ms

CONCLUSION CONTD

- It captures those peaks of vibration which are missed by conventional measurement systems due to their poor resolution.
- fast measurement of velocity and acceleration of vibrations from the proposed system will help in the prediction of earthquakes.

CONCLUSION CONTD

 Also proposed method is very suitable for proper design of earthquake resistant nuclear power plants, buildings and structures.

REFERENCES

- T. Bleier and F. Freund, 2005. "Earthquake alarm," *IEEE Spectr.*, vol. 42, no. 12, pp. 22–27, Dec. 2005.
- K. Okubo, M. Takayama and N. Takeuchi, "Electrostatic field variation in the atmosphere induced by earth potential difference variation during seismic wave propagation," *IEEE Trans. on Electromagnetic Compatibility*, vol. 49, no. 1, pp.163-169, Feb. 2007.
- D. M. Tralli, W. Foxall, A. Rodgers, E. Stappaerts, and C. Schultz, "Suborbital and spaceborne monitoring of seismic surface waves," in proc. 2005 IEEE Aerospace Conf., Pasadena, CA, USA, pp. 1-6.
- C. Albertini, Ispra, K. Labibes, and Orino, "Seismic wave measuring devices," U.S. Patent 6,823,963 B2, Nov. 30, 2004.
- P. C. Jenkins, *Engineering seismology from earthquakes: observation, theory and interpretation*, North Holland, H. Kanamori and E. Boschi, 1983.
- P. Varotsos, K. Alexopoulos, and K. Nomicos, "Seismic electric currents," in *Proc. 1981 The Academy of Athens Conf.*, pp. 277–286.
- P. Varotsos, K. Alexopoulos, K. Nomicos, G. Papaioannou, M. Varotsou and E. Revelioti-Dologlou, "Determination of the epicenter of impending earthquakes from precursor changes of the telluric current," in *Proc. 1981 The Academy of Athens Conf.*, pp. 434–446.
- P. Varotsos, K. Alexopoulos and K. Nomicos, "Electrotelluric precursors to earthquakes," in *Proc. 1982 The Academy of Athens Conf.*, pp. 341–363.
- P. Varotsos, K. Alexopoulos, K. Nomicos and M. Lazaridou, "Earthquake prediction and electric signals," *Nature*, vol. 322, pp. 120, July 1986.
- P. Varotsos, N. Sarlis, M. Lazaridou, and P. Kapiris, "Transmission of stress induced electric signals in dielectric media," *Journal of Applied Physics*, vol. 83, pp. 60–70, Jan. 1998.
- S. J. Lighthill, <u>A critical review of VAN Earthquake prediction from seismic electrical signals</u>, London, UK: World Scientific Publishing Co Pvt. Ltd. 1996, <u>ISBN 978-9810226701</u>.
- Y. Y. Kagan, <u>"Special section-assessment of schemes for earthquake prediction; Are earthquakes predictable?</u>" *Geophys. J. Int.,* vol. 131, pp. 505-525, 1997.
- C. Y. King, W. C. Evans, T. Presser, and R. Husk, "Anomalous chemical changes in well water and possible relation to earthquakes," *Geophys. Res. Lett.* vol. 8, pp. 425–428, 1981.
- C. Y. King, N. Koizumi and Y. Kitagawa, "Hydrogeochemical anomalies and the 1995 Kobe earthquake," *Science 7*, vol. 269, pp. 38–39, July 1995.

REFERENCES CONTD

- N. M. Pérez, P. A. Hernández, G. Igarashi, I. Trujillo, S. Nakai, H. Sumino and H. Wakita, "Searching and detecting earthquake geochemical precursors in CO₂-rich ground waters from Galicia, Spain," *Geochemical Journal*, vol. 42, pp. 75-83, 2008.
- P. Mandal, "Crustal shear-wave splitting in the epicentral zone of the 2001 Mw 7.7 Bhuj earthquake, Gujarat, India," *Journal of Geodynamics*, vol. 47, pp. 246–258, 2009.
- W.R. Stephenson, "Late resonant response at Wainuiomata, New Zealand, during distant earthquakes," *Journal of Soil Dynamics and Earthquake Engineering*, vol. 25, pp. 187–196, 2005.
- E. Durukal, "Critical evaluation of strong motion in Kocaeli and Du["]zce (Turkey) Earthquakes," *Journal of Soil Dynamics and Earthquake Engineering*, vol. 22, pp. 589–609, 2002.
- I. M. Taflampas, C. C. Spyrakos and I. A. Koutromanos, "A new definition of strong motion duration and related parameters affecting the response of medium–long period structures," *Journal of Soil Dynamics and Earthquake Engineering*, vol. 29, pp. 752–763, 2009.
- R. Rupakhety, and R. Sigbjornsson, "A note on the L'Aquila earthquake of 6 April 2009: Permanent ground displacements obtained from strong-motion accelerograms," *Journal of Soil Dynamics and Earthquake Engineering*, vol. 30, pp. 215–220, 2010.
- S. J. Arif and Shahedul Haque Laskar, "A rotating magnetic field based high resolution measurement of velocity and acceleration of seismic vibrations," *The Patent Office Journal 29/04/2011, Issue No. 17/2011,* Application No.778/DEL/2011A, pp-7116, April 2011.
- Department of Earthquake Engineering, Indian Institute of Technology, Roorki, U.P., India.