Applications and imaging techniques of a Si/CdTe Compton gamma-ray camera

Shin’ichiro Takeda
(Institute of Space and Astronautical Science/JAXA)

Yuto Ichinohe, Koichi Hagino, Hirokazu Odaka Shin-nosuke Ishikawa, Taro Fukuyama, Shinya Saito, Tamotsu Sato, Goro Sato, Shin Watanabe, Motohide Kokubun, Tadayuki Takahashi (ISAS/JAXA), Mitsutaka Yamaguchi (JAEA), Hiroyasu Tajima (Nagoya U), Takaaki Tanaka (Stanford U)
Kazuhiko Nakazawa (U. Tokyo), Yasushi Fukazawa (Hiroshima U), Takashi Nakano (Gumma U), Shuichi Enomoto (RIKEN)
Si/CdTe Compton camera

Gamma-ray detector for ASTRO-H satellite (2014)

Accumulation structure of high resolution (ΔE, ΔX) semiconductor detectors

The direction of incident gamma-ray:

\[\cos \theta = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2} \right) \]

Characters:

- Si/CdTe (low-Z/high-Z) combination
 - good angular resolution (~1°@ 500 keV)
 - fine energy resolution (~1% @ 500 keV)
- Imaging of low energy gamma-rays around 100 keV (c.f. COMPTEL, 750 keV)
- Compact and portable (c.f. COMPTEL, 2 m, 1.5 ton)

Possible gamma-ray imaging system ... ->
Possible applications

Capability of simultaneous tracking variant radioisotopes.

Near-field (1 ~ 50 cm) applications

Advanced imaging with multiple probes

Small animal imaging for drug discovery
(c.f. Motomura et al. IEEE 2007)

Nuclear medicine

Middle-field (1 ~ 50 m) applications

Hot spot monitoring

None of commercial imaging system that determine the kind of radioisotopes
Detector requirements

<table>
<thead>
<tr>
<th>Field</th>
<th>Required sensitivity</th>
<th>Detector configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-field (1-50cm)</td>
<td>>100 cps/MBq @ 10 cm, 300-600 keV (c.f. Commercial gamma camera; ~100 cps/MBq @ 10 cm)</td>
<td>Si; 3.2cm wide, 0.5 mm thick CdTe; 3.2cm wide, 0.75 mm thick Si ; 4 layers CdTe; 4 layers x 4 modules</td>
</tr>
<tr>
<td>Middle-field (1-50 m)</td>
<td>100 MBq of 137-Cs (662 keV) Distance ; 5 m Exposure time ; 300 sec</td>
<td>Si ; 1 or 2 layers CdTe; 4 layers x 1 modules</td>
</tr>
</tbody>
</table>
| Extremely Far-field (Astrophysics) | See Soft Gamma-ray Detector
(SGD, ASTRO-H)
H.Tajima et al. IEEE 2005,
T. Takahashi et al. SPIE 2008 | Adequate sensitivity depends on applications ... |
Flexible detector modules

Selectable in the number of detectors and their combination !!

Example: 5-layer stack system (Si 1, CdTe 4)

Double-sided strip detectors
- Si; 3.2cm wide, 0.5 mm thick
- CdTe; 3.2cm wide, 0.75 mm thick
 250 um strip pitch

ADC implemented VATAs
Floating bias supply
High energy resolution
- Si; 1.5 keV @ 60 keV
- CdTe; 1% @ 511 keV

ASTRO-H HXI model
(4.0 mm stack pitch)
Typical performance

Si strip detector

-20 °C, 300 V

\(^{241}\text{Am}\)

17 keV

13.9 keV

CdTe strip detector

-20 °C, 300 V

\(^{57}\text{Co}\)

122 keV

14 keV

136 keV
Typical performance

CdTe strip shadow image

Si strip shadow image

Detector

100 V

22 keV
Some experimental results with prototype camera
Near-field

Multi-probe tracker

Imaging test with a living mouse

Si : 1 layer, CdTe: 4 layers

Injected radiopharmaceuticals;

- Iodinated \(^{131}\text{I}\) methylNorcholestenol (18.7 MBq: 5,4 and 3-days before imaging)
 used for adrenal scintigraphy
 marked accumulation to a thyroid

- \(^{85}\text{SrCl}_2\) solution (2 MBq: 1-day before imaging)
 taken up in new bone growth
 scanning for bone lesions
Near-field

Spectrum after 6 hours observation

$^{131}\text{I} (364 \text{ keV})$

$^{85}\text{Sr} (514 \text{ keV})$
Near-field

$^{131}I(364 \text{ keV})$

$^{85}\text{Sr}(514 \text{ keV})$

Feasibility of a multi-probe tracker is demonstrated!!
Middle-field

Advanced hot spot monitor

22 Na(511 keV, 0.5 MBq, 1.0 m)

137 Cs(662 keV, 2.8 MBq, 1.2 m)

133 Ba(356 keV, 2.3 MBq, 1.2 m)

\approx 50 MBq @ 5 m
Results after 10 min

137Cs (662 keV, 2.8 MBq)
Results after 10 min

137 Cs (662 keV, 2.8 MBq)
Results after 20 min

133Ba (356 keV, 2.3 MBq)
Results after 20 min

$^{133}\text{Ba}(356 \text{ keV}, 2.3 \text{ MBq})$
Results after 20 min

22Na(511 keV, 0.5 MBq)
Results after 20 min

$^{22}\text{Na}(511 \text{ keV, } 0.5 \text{ MBq})$
Field of view

Experiment (662 keV): 1.7×10^{-2} cps/MBq @ 1m, 20 degree
Summary

New compact Compton imaging system based on Si / CdTe semiconductor detector technologies accumulated for past 15 years.

- High energy resolution, low energy threshold (~5keV), 250um pitch double-sided Silicon and CdTe strip detectors.
- ADC implemented VATA ASICs
- Compact detector boards
- Selectable in the number of detector boards

Feasibilities of a multi-probe tracker and advanced hot spot monitor are successfully demonstrated.