Analysis of data recorded by a GEM LPTPC

Martin Ljunggren on behalf of the LCTPC Collaboration

June 11, 2011

Outline

- The Large Prototype TPC with GEM readout
- Readout electronics
- Track reconstruction
- Distortion correction
- Spatial resolution
- Momentum resolution

GEMs and pad plane

- 5152 pads, approximately $1 \times 5 \mathrm{~mm}$, organized in 28 rows
- A GEM-foil consists of $5 \mu \mathrm{~m}$ Cu-layers separated by $100 \mu \mathrm{~m}$ of insulating material
- Hole size: $70 \mu \mathrm{~m}$
- Pitch: $140 \mu \mathrm{~m}$
- 360V between Cu-layers
- Two GEM foils give a gain of about 10^{4}
- "T2K-gas" : $95 \% \mathrm{Ar}, 3 \% \mathrm{CF}_{4}, 2 \%$ isobutane

Instrumentation

GEM support pillar

GEM HV-line

Figure: The instrumented region of the pad planes (black)

Readout electronics

PCA16:

- 16 channel preamplifier and shaper
- Modified version of PASA-chip from ALICE.
- Programmable gain, shaping and decay time.

ALTRO:

- Originally developed for ALICE.
- Sampling at 20 MHz
- Pedestal subtraction and zero suppression
- Capable of storing 102410 bit ADC samples.

Next step: Integration of preamplifier and ADC into one chip (S-ALTRO).

Due to the large number of readout channels and the small space available on the pad modules, the electronics had to be connected with 30 cm long Kapton $®$ cables.

Event display

Figure: Typical event without magnetic field. Drift distance: 5 cm

Figure: Typical event with magnetic field. Drift distance: 10 cm

Track reconstruction

Figure: Left: Typical pulse. Right: Typical track.

- Time is reconstructed as the voltage weighted average of the five samples around the peak.
- Adjacent pulses are grouped into clusters where coordinates are determined by e.g. $y=\frac{\sum Q_{i} y_{i}}{\sum Q_{i}}$ where Q_{i} is the charge of the pulse and y_{i} is the corresponding y-coordinate of the pad.
- For tracking, a simple track reconstruction algorithm was used.

Residuals

Figure: Upper: Magnified event display. Lower: Residuals integrated over the full track length from 10000 tracks with 7 cm drift length and $\mathrm{B}=0 \mathrm{~T}, \sigma \approx 0.31 \mathrm{~mm}$ for a Gaussian core accounting for 95% of the total area. Distortion correcions have been applied.

Distortions

If the residuals are plotted against pad row, they should line up around zero. However:

Figure: Left: Residuals for 10000 tracks vs pad row for $\mathrm{B}=1 \mathrm{~T}$ and drift length of 10 cm . Right: Residuals integrated over the full track length using 10000 tracks from the same run

After corrections

Corrected using Millipede, see "A new method for the high-precision alignment of track detectors", Volker Blobel

Figure: Left:Residuals for 10000 tracks vs pad row for $B=0 T$ and drift length of 5 cm (upper) and $B=1 T$ and drift length of 10 cm (lower) Right: Residuals integrated over the full track length using 10000 tracks from the same run, $\sigma \approx 0.16 \mathrm{~mm}$ (upper) and $\sigma \approx 0.077 \mathrm{~mm}$ (lower) for a Gaussian core accounting for 95% of the total area

Resolution in bend plane

Figure: Measured resolution for different drift lengths. The line crosses the y-axis at $0.00349 \mathrm{~mm}^{2}$ which corresponds to an intrinsic resolution of $\sigma_{y}(0)=59.1 \pm 0.4 \mu \mathrm{~m}$.

Comparison with theoretical predictions.

Figure: Predicted resolution for different magnetic field strengths and slightly different conditions. Also shown are the points measured experimentally (shown in prev. slide) ${ }^{1}$.

[^0]
Resolution in Z

Figure: Measured resolution in the z-direction for different drift lengths and shaping times. The best results are obtained with a shaping time of 60 ns . Extrapolating the fitted line to half the drift length of the final TPC gives $346 \pm 9 \mu \mathrm{~m}$ which is well below the desired resolution of $500 \mu \mathrm{~m}$. An extrapolation to the full drift length (2.15 m) gives $446 \pm 9 \mu \mathrm{~m}$, still below the goal resolution.

Momentum measurements

- $p \approx 0.3 B \cdot R$
- $\sigma(1 / p) \approx 9.2 \cdot 10^{-3} \pm 0.0002 \mathrm{GeV}^{-1}$
- The track fit includes all points along a reconstructed track.

Figure: Measured track momenta (left) and $1 / \mathrm{p}$-distribution (right) at a drift length of 15 cm .

- The momentum resolution has been calculated from a gaussian fit to the peak covering 42% of the total area.
- However, the momentum spread of the beam is $\approx 5 \%$ which gives $\sigma(1 / p) \approx 0.01 \mathrm{GeV}^{-1}$ at 5 GeV , and therefore the measured width is fully consistent with the beam spread.

Theoretical momentum resolution

- Glückstern's formula: $\delta\left(\frac{1}{P_{T}}\right)=\frac{\sigma_{y}}{0.3 L^{2} B} \sqrt{\frac{720}{N+4}}$
- $N=84, L \approx 48 \mathrm{~cm}$ and $B=1 \mathrm{~T}$.
- $\sigma_{y} \approx 76 \mu \mathrm{~m}$ (drift of 15 cm) gives $\sigma(1 / p) \approx 3 \cdot 10^{-3} \mathrm{GeV}^{-1}$.

Summary

- Test measurements with a TPC using GEM readout have been performed.
- Corrections for electric field distortions have been introduced using the Millepede software package.
- Results on spatial resolution show that σ_{y} at zero drift is $59.1 \pm 0.4 \mu \mathrm{~m}$ and σ_{z} at zero drift is $216 \pm 7 \mu \mathrm{~m}$.
- Result on momentum resolution is $\sigma\left(1 / p_{t}\right) \approx 9.2 \times 10^{-3} \pm 0.0002 \mathrm{GeV}^{-1}$ at a drift length of 15 cm . The momentum spread of the beam is however non negligible.
- Theoretical estimation on momentum resolution at $\sigma_{y} \approx 76 \mu \mathrm{~m}$ gives $\sigma(1 / p) \approx 3 \cdot 10^{-3} \mathrm{GeV}^{-1}$.
- Results on spatial resolution are consistent with the goals for the full size ILD TPC.

Resolution

- Track parameters from fit gives too optimistic estimation of the resolution.
- Use geometric mean of widths of the distributions with investigated cluster included, $\sigma_{\text {inc }}$, and excluded, $\sigma_{\text {exc }}$, from fit respectively. ${ }^{1}$
- $\sigma=\sqrt{\sigma_{i n c} \cdot \sigma_{e x c}}$

[^0]: ${ }^{1}$ K. Ackermann et.al. Nucl.Instrum.Meth.A623:141-143,2010

