New semiconductor 2D position-sensitive detector

Technology and Instrumentation in Particle Physics 2011

M. Fernández, R. Jaramillo, F.J. Muñoz, I. Vila
IFCA (CSIC-UC)

D. Bassignana, M. Lozano, G. Pellegrini, D. Quirion
CNM-IMB (CSIC)
Outline:

Recalling the charge division principle
Description “proof of concept” prototypes
Laser and \(^{90}\text{Sr}\) source characterization
Results from test beam @ SPS (CERN)
Few words about second Prototype
Next steps & Conclusions
Charge division principle

- Charge division in wire chambers is used to determine the coordinate along the sensing wire

- Electrodes with slightly resistive material produce same effect in microstrips silicon detectors
First prototype and main characteristics

* The first prototypes of the new sensors have been designed and produced at the IMB-CNM facilities

* Standard planar technology p-on-n, 300 μm thick

* Highly doped polysilicon as resistive electrode

* Strip length = 14 mm

* 68 strips/detector

* 2 prototypes with different strip widths: (20,40) μm

* Aluminum via to drive the contact pads at the same edge of the detector. **Only 1 chip to readout the detector!!!**
Electrical characterization

<table>
<thead>
<tr>
<th>Strip Width</th>
<th>V_{dp}</th>
<th>V_{td}</th>
<th>R_{bias}</th>
<th>R_{int}</th>
<th>C_{int}</th>
<th>C_{cap}</th>
<th>$R_{electrode}$</th>
<th>$R_{electrode}$ /µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>20µm</td>
<td>40 V</td>
<td>> 400 V</td>
<td>1,31 MΩ</td>
<td>> GΩ</td>
<td>1,32 pF</td>
<td>248 pF</td>
<td>400 Ω/□</td>
<td>20 Ω/µm</td>
</tr>
<tr>
<td>40µm</td>
<td>40 V</td>
<td>> 200 V</td>
<td>1,37 MΩ</td>
<td>> GΩ</td>
<td>1,60 pF</td>
<td>487 pF</td>
<td>400 Ω/□</td>
<td>10 Ω/µm</td>
</tr>
</tbody>
</table>

F. J. Muñoz, Technology and Instrumentation in Particle Physics 2011, Chicago, June 11th
Readout electronic: ALIBAVA

Portable system
Beetle chip

Daughter board & detectors
Chips calibration

* **Chip1** Did not perform the calibration

* No data for detector with a width of 40μm

* Linearity on the response
Laser characterization.

Test stand

* 3D stage platform. \(\sim 5 \mu m \) accuracy
* \(\lambda = 1080 \) nm
* Gaussian profile. Microspot width \(2\sigma \) \(< 10 \) \(\mu m \)
* Pulse duration \(< 1 \) ns
* Pulse energy \(\sim 10\% \) gaussian fluctuation
Laser longitudinal scan

At position 0: $S2 \neq 0$

Are not perfectly antisymmetric!
Coupling effect?

F. J. Muñoz, *Technology and Instrumentation in Particle Physics 2011, Chicago, June 11th*
Charge division. experimental results

\[
\left(\frac{S_2 - S_1}{S_2 + S_1} \right) < 1
\]

\[
-1 < \frac{S_2 - S_1}{S_2 + S_1} < 1
\]

Table:

<table>
<thead>
<tr>
<th>Model</th>
<th>Polynomial</th>
<th>Value</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj. R-Sq</td>
<td>0.9999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Intercept</td>
<td>5.610</td>
<td>0.01471</td>
</tr>
<tr>
<td>D</td>
<td>B1</td>
<td>7.801</td>
<td>0.04391</td>
</tr>
<tr>
<td>D</td>
<td>B2</td>
<td>-0.453</td>
<td>0.0645</td>
</tr>
<tr>
<td>D</td>
<td>B3</td>
<td>2.598</td>
<td>0.11251</td>
</tr>
</tbody>
</table>

3\(^{rd}\) degree polynomial fit
Charge division. experimental results

With this detector, the coordinate along the strip can be determined in a range of 100 μm.

Fit residuals within ±50 μm band
Simulation & data comparison

* Circuital model: (N, Bachetta et al., IEEE, Vol 47, NO 4, August 1995)

Five strips (R_{str}, C_{cou}, R_{met}). Interstrip circuital elements (C_{int}, R_{int}, C_{m}, C_{p}).
Bulk representation (R_{sub}, C_{sub})

* Overall shape reproduced

* Signal excess in S2, caused for coupling between resistive electrode and metal wire
Radio source characterization.

Averaged noise Chip 2 = 2.18 ADCs

SNR ~ 15
Test beam @ SPS

During the first week of October testing at SPS pion (120GeV) beam in parasitic mode

Alibava DAQ (LHCb beetle chip)
Test beam data

Noise:
Chip 2 = 900 ENC

SNR ~ 15
Test beam @ SPS

Inside EUDET mimosa telescope

* APV25 DAQ system
* T. Bergauer et al.

HEPHY institute (Vienna)

*Analyzing data with telescope tracker

F. J. Muñoz, Technology and Instrumentation in Particle Physics 2011, Chicago, June 11th
Second prototype

* New 2D strip sensor of large area produced at CNM (3 cm strip length). 6 Wafers.

* Electrically characterized

 * Different electrical test structures
 * Standard strip detector
 * 2 fanout integrated sensors
Second prototype &
Some electrical Characteristics

* No - Aluminum via. Contacts at both strip ends to be read out by two independent FE chips

* New Sensor board produced at CNM adapted to ALIBAVA

 \[\text{Vfd} \sim 40 \text{ V} \]
 \[\text{Cint} \sim 0.4 \text{ pF} \]
 \[\text{Rint} > G\Omega \]
 \[\text{Rbias} = 2.5 \text{ M}\Omega \]

\[2 \text{ wafers } R_{\text{electr.}} = 90 \text{ }\Omega/\text{ sqr} \]

\[4 \text{ wafers } R_{\text{electr.}} = 380 \text{ }\Omega/\text{ sqr} \]
Short term plans

* 2 New prototypes already bonded. 128 channels each

* Preparing setup to be tested with laser and radioactive source

* Next test beam at SPS on August 2011

Bonding done at: UNIVERSITY of LIVERPOOL
Conclusions

* We have demonstrated the feasibility of the charge division method in microstrip sensors to determine the coordinate along the strip
* Resolution in the determination of the strip coordinate much better that 100 um
* We have used the standard (cheap) technology to produce this genuine 2D single sided strip detector

Possible application targets:

- Future detector outer trackers (trigger capable modules)
- Ions tracking systems.
- Neutron imaging (+ conversion element).
- Space applications.
THANKS FOR YOUR ATTENTION!
SPICE model

D. Bassignana (CNM-Barcelona)

Circuital model:
\((N, \text{Bachetta et al., IEEE, Vol 47, NO 4, August 1995})\)

- \(n\): node number
- \(m\): pulse impact
- \(R\): electrode resistance
- \(R_{\text{imp}}\): implant resistance
- \(R_{\text{sub}}\): substrate resistance
- \(C_{\text{sub}}\): substrate capacitance

Unit Cell, a chain of them represents a strip
Laser delay studies

F. J. Muñoz, *Technology and Instrumentation in Particle Physics 2011, Chicago, June 11th*
Transversal scan