### Probing the Cosmic Frontier with the Cosmic Microwave Background: Current Status and Future Challenges

John Carlstrom Kavli Institute for Cosmological Physics at the University of Chicago

1

# It is an exciting time for cosmology

We now have a model that describes the evolution of our Universe from a hot and dense state.

We are able to make precise predictions and test them with powerful new experiments.

The model has some unusual features - new physics -<u>Dark Matter, Dark Energy</u>, and starts with a period of <u>Inflation</u>



Much of the model has been determined from measurements of the Cosmic Microwave Background (CMB) radiation

Measurements of the CMB provide a snapshot of the universe as it was 14 billion years ago.



#### **Discovery of the Cosmic Microwave Background**



© 2004 Thomson - Brooks/Cole

#### "smoking gun" evidence for a <u>Hot Big Bang</u>

Arno Penzias & Robert Wilson in front of the 20ft Bell Labs antenna used to discover the microwave background in 1965

#### **Received 1978 Nobel Prize**



#### Enormous impact on Cosmology

#### **Discovery of the Cosmic Microwave Background**



© 2004 Thomson - Brooks/Cole

#### "smoking gun" evidence for a <u>Hot Big Bang</u>

Arno Penzias & Robert Wilson in front of the 20ft Bell Labs antenna used to discover the microwave background in 1965

#### **Received 1978 Nobel Prize**



#### Enormous impact on Cosmology

#### Structure in background discovered in 1992



**Uniform to a part in 10<sup>5</sup>** the smoothness problem led to Inflation theory

#### Structure in background discovered in 1992



**Uniform to a part in 10<sup>5</sup>** the smoothness problem led to Inflation theory





## Early universe as an HEP lab



## Early universe as an HEP lab



- Density (scalar) fluctuations:

 $P_s(k) = \mathbf{A}_{\mathbf{s}} k^{(\mathbf{n}_{\mathbf{s}} - 1 + \frac{1}{2}\alpha_{\mathbf{s}}\ln k)}$ 

- Gravitational wave (tensor) fluctuations:

$$P_t(k) = \mathbf{A_t} k^{\mathbf{n_t}}$$

A<sub>s</sub>, n<sub>s</sub>,  $\alpha_s$ , A<sub>t</sub>, n<sub>t</sub> are measurable and related to the shape of the inflaton potential  $\mathbf{r} = \mathbf{A_t}/\mathbf{A_s}$  determines the energy scale



**Superhorizon features** Connecting the smallest and largest scales in the universe





#### Incredible progress with CMB



Komatsu et al., arXiv:1001:4538; Larson et al., arXiv:1001.4635<sub>11</sub>



Komatsu et al., arXiv:1001:4538; Larson et al., arXiv:1001.4635<sub>11</sub>

#### **Push to higher resolution ACT and SPT**

Cameras with ~1000 detectors



- High, dry sites for dedicated CMB observations.
- Exploiting ongoing revolution in low-noise bolometer cameras

## The 10 meter South Pole Telescope

**Receiver cryostat** 

(250mK)



**Some Key Features:** 

- I arcmin resolution at 150 GHz
- I deg FOV, unblocked optics
- **960 feedhorn coupled detectors**
- Observe in 3+ bands 90, 150 & 220 GHz simultaneously with a modular focal plane
- Site: fantastic atmospheric transparency and stability, 24/7/52 observing

**Secondary Mirror** 

cryostat

(10 K)



Ongoing revolution of mm & submm arrays. Soon it will be possible to field tens to hundreds of thousands of detector focal plane arrays.







Keisler et al., arXiv:1105.3182

# **CMB** anisotropy damping tail measurements



Keisler et al., arXiv:1105.3182

### **CMB anisotropy damping tail measurements**



Keisler et al., arXiv:1105.3182

#### SPT and WMAP give consistent values for standard ACDM 6-parameters, so we fit jointly.



SPT: Keisler et al., arXiv:1105.3182; for ACT results see Dunkley et al arXiv:1009.0866

#### SPT and WMAP give consistent values for standard ACDM 6-parameters, so we fit jointly.



SPT: Keisler et al., arXiv:1105.3182; for ACT results see Dunkley et al arXiv:1009.0866

## Going beyond the 6 $\land$ CDM parameters: fitting an additional parameter

#### Improved limit to tensor perturbations



#### **Running of the spectral index?**



#### Number of relativistic species, N<sub>eff</sub>



To understand CMB sensitivity to N<sub>eff</sub>, see Hou et al., arXiv: 1104.2333

#### **Additional neutrinos?**

## Adding cluster abundance constraint on $\sigma_8$ pushes $N_{eff}$ closer to 3



Using  $\sigma_8$  constraints from local abundance of galaxy clusters (Vikhlinin et al., 2009).

## Stay tuned for more results from SPT, ACT & Planck





The Planck one-year all-sky survey



(c) ESA, HFI and LFI consortia, July 2010

All these "large-scale" fluctuations are primary CMB.

All these "large-scale" fluctuations are primary CMB.



 $(\cdot)$ 

Lots of bright sources: SPT discovery of a new population of distant star forming galaxies

All these "large-scale" fluctuations are primary CMB.



~15-sigma SZ detection of massive cluster of galaxies (Note SZ effect independent of distance, i.e., redshift)

> Lots of bright sources: SPT discovery of a new population of distant star forming galaxies

## **Polarization of the CMB**

The CMB must be polarized due to Thomson scattering



## **Polarization of the CMB**

The CMB must be polarized due to Thomson scattering



## **Generating CMB polarization**



**During decoupling:** 

- mean free path increases and electron 'sees' quadrupole
- scattered light is polarized

## **E-mode Polarization (even parity)**



28

### Gravitational wave induced CMB polarization



Figure from John Kovac's thesis

### Gravitational wave induced CMB polarization



Figure from John Kovac's thesis

## **B-mode Polarization (odd parity)**

Polarization oriented ±45 degrees to wave vector

Can NOT be generated by the density fluctuations, but can be generated by gravitational waves sourced by Inflation in the first

Odd parity, div free

instants of the universe, 10<sup>-35</sup> seconds, at GUT energies.

"Smoking gun" test of Inflation and direct measure of its energy scale







Spectra generated with WMAP7 parameters using CAMB, Lewis and Challinor





r is the tensor to scalar ratio of the primordial fluctuations







35





#### 

## **Closing in on inflation**



Leitch et al (2005), Montroy et al (2006), Piacentini et al (2006), Sievers et al (2007), Wu et al (2007), Bischoff et al (2008), Brown et al (2009), Chiang et al (2010), QUIET (2010)

Compilation from A. Kusaka

## Need more sensitivity!

## Achieved with more throughput with large focal planes of background limited detectors.



**Background limited performance (BLIP)** 

from the ground, balloon and space.

Several times quantum noise limit performance. Competive sensitivity at low frequencies from the ground.

Multiplie

## **Coherent detectors** - cooled HEMT amplifiers



State of the art MMICs (35nm gate)



Once amplified and quantum noise penalty taken, signal is easily manipulated, cryogenics simple

Several times quantum limited performance achieved, competitive at  $v \leq 90$  GHz on ground.

Technology of choice at lower frequencies.

Future CMB requires improvement in noise and scalability

## **Coherent detectors** - cooled HEMT amplifiers



See talk on QUIET by Hogan Nguyen



#### **TES - Transition-Edge-Sensor**



Voltage biased transition edge sensor (TES).

Measure incident power (pW) by change in bias current using SQUIDS.

Multiplexed in frequency or time.



### **Rapid Progress in Superconducting Bolometer Detectors**

Slide adapted from Jamie Bock





## JPL: Planar Antenna-Coupled Polarimeters

Slide adapted from Jamie Bock







#### <u>Advantages</u>

- Photon-limited sensitivity
- Multiplexed readout for arrays
- Planar architecture for arrays
- No coupling optics
- Easily scaled in frequency

### JPL: Planar Antenna-Coupled Polarimeters

Slide adapted from Jamie Bock





BICEP2, Keck Array, Spider focal plane: 256 planar feed pixels, 512 TES bolometers

## on degree scale CMB experiments at the South Pole

**BICEP2** 



#### Keck Array (soon to be 5 telescopes

#### Slide adapted from John Ruhl

## And soon on a balloon ... "Spider"



### Berkeley: "Polarbear" Lensed coupled arrays





# Multichroic pixel focal planesSlide adapted from Adrian Lee- UC Berkeley sinuous planar antenna



Receiver end-to-end efficiency



4:1 Bandwidth, Symmetric beams, low cross-pol

## **NIST Polarimeter Arrays**

- Truce Collaboration: NIST, UC Berkeley, CU Boulder, U Chicago, U Michigan, U Penn., Princeton, NASA GSFC, Stanford
- Superconducting transition-edge-sensor polarimeters (TES)
- Monolithic corrugated silicon feedhorn arrays
- For ABS (Atacama B-mode Search), ACTpol, SPTpol

**Gold-plated silicon feed array** 



## First Argonne Labs TES pixels (90 GHz)



# South Pole Telescope initial polarimeter "SPTpol"





588 pixels at 150GHz from NIST 192 pixels at 95GHz from Argonne

## last words

## Driven by advances in detectors, we expect the next ten years of CMB research to be as exciting as the last ten.

- -Put ΛCDM to the test & constrain extensions More surprises?
- -Tests of dark energy. Is it just  $\Lambda$  or...
- -Neutrino masses from CMB polarization
- -Test inflation with CMB polarization