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Motivation for radiation hard sensors

• Fact of 10 luminosity upgrade 
of LHC to HL-LHC to extend 
physics programme

• Radiation damage increase in 
proportion to integrated 
luminosity

• Need to optimise silicon 
detector design to survive

• Radiation hardness requirements (including safety factor of  2)

• 2 × 1016 neq/cm2 for the innermost pixel layers

• 1× 1015 neq/cm2 for the innermost strip layers

#203: Silicon Detectors for 

High Luminosity Colliders. RD50 Status 

Report. Ulrich Parzefall
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3D sensors

Planar 3D

• Greater signal charge due to 

faster collection time (less 

trapping)

• Reduced power consumption 

due to lower depletion voltages

• Reduced charge sharing  

• Active edge technology: large-

area tiled ‘edge-less’  detectors

Drawbacks

 increased complexity, yield issues

 areas of inefficiency
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Double sided 3D sensors

3D Double-sided 3D

• Reduce fabrication complexity

• Increase yield

• All regions of sensor have active 

Silicon

Double depletion

Lateral depletion ~4V

Full depletion~40V
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Precision scans of a 3D pixel cell

Timepix Telescope

• TimePix/Medipix chips: 256*256 55µm square pixels

• Energy deposition provided by Time over Threshold in TimePix

• 120 GeV pion beam from SPS

• Device under test (DUT): double sided 3D N-type pixel sensor

• DUT on high resolution rotational and translational stage

For more details on telescope see

• # 147 - The LHCb VELO upgrade. Daniel Hynds 

• Charged Particle Tracking with the Timepix ASIC.arXiv:1103.2739

Precision scans of the Pixel cell response of double sided 3D Pixel detectors to pion and 

X-ray beams. 2011 JINST 6 P05002
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Timepix Telescope

Precision scans: Charge deposition

Mean energy deposited mapped onto pixel cell

Single pixel 

response

Seed and nearest 

neighbours

• Area removed from columns exhibits standard Landau shape

• Charge deposition full/column ration = 35/285µm ratio

• Full cluster energy reconstruction
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Precision scans: Efficiency

Timepix Telescope

Voltage Corner Centre Ring Pixel

2V 35.6 79.1 99.1 91.2

20V 39.1 86.7 99.7 93.0

Full efficiency, 99.8±0.5%, reached 

at an angle of 10o to the incident 

beam 



8

Precision scans: Spatial resolution

Timepix Telescope

• Hits that only affect one pixel have limited resolution

• Tilting the sensor means all tracks charge share 

• Can use ToT information in centroid, CoG calculations

• Maximum spatial resolution at 10o  *

55µm

285µm
0o

* Charged Particle Tracking with the Timepix ASIC. arXiv:1103.2739

3D Planar *

Degrees 0o 10o 0o 10o

Spatial 

resolution

15.8±0.1 9.18±0.1 10.15±0.1 5.86±0.1

Binary resolution = 55µm / √12 = 15.9µm

Resolutions shown can be and have been improved with eta corrections and the removal 

of track extrapolation error
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Precision scans: Charge sharing

Timepix Telescope

3D

Planar

Single 

pixel hits

2 pixel 

clusters
>2 pixel 

clusters

Clusters /

pixel hits

59% of incident particles multiple pixel hits in the planar sensor.

14% of incident particles multiple pixel hits in the 3D sensor.
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Strip devices

3D devices

P-stop isolation before and after irradiation to 10x10
15 

Inter-strip resistance 100MΩ

Leakage current scales as expected

Electrical measurements

Fluence

(1x1015 1MeV 

neq cm-2)

Lateral depletion 

voltage (V)

0 4

0.5 15 ± 5

5 100 ± 10

10 145 ± 10

0.5 1,2,5,10,20 x1015 1 MeV neq cm-2 (±20%) 

Karlsruhe Institute of Technology, -20◦C, 26 MeV protons

80 µm 74.5 µm

320 µm
285 µm

Planar3D
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Spatial resolution

Silicon Beam Telescope

3D binary resolution = 74.5µm / √12 = 23.1µm

• Resolution before and after 

irradiation close to binary resolution

• Summer 2011 – highly irradiated 

sensors in TimePix Telescope

Beam Test Measurements With Planar and 3D Silicon Strip Detectors Irradiated to 

sLHC Fluences. Submitted to IEEE Trans. Nucl. Sci., DOI 10.1109/TNS.2011.2126598 

The spatial resolutions contain telescope alignment error
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3D biased to 150V
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3D biased to 150V

3D SNR

Charge collection efficiencies (150V)

Sr-90 electrons

Temp = -13.5oC

• Large charge collection at high fluences 

and modest voltages 

• 3D charge collection of 47% of Qo @1016

fluence at 150V 

•This has been simulated using TCAD 

without any high field effects present and 

shows very good agreement 
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3D biased to 150V

Planar biased to 1000V

3D SNR

Expected charge deposition = Qo

• Noise is constant giving a signal to noise 

value of >10 @ 1016 fluence at 150V

• Compared to planar sensor higher charge 

collected

• Planar charge collection, 30% of  Qo

@1016 fluence at 1000V

Charge collection studies and electrical measurements of heavily irradiated 3D Double-

Sided sensors and comparison to planar strip detectors. R. Bates et al., submitted to IEEE
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Charge collection efficiencies (~250-300V)

Sr-90 electrons Charge multiplication through impact ionisation

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

Fluence (10
15

 1 MeV n
eq

 cm
-1

)
C

o
ll

e
c
te

d
 c

h
a
rg

e
 (

e
le

c
tr

o
n

s
)

 

 

3D biased to 250-300V
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Planar biased to 1000V

3D SNR

Expected charge deposition = Qo

• 52% of Qo collected at 20x1015 1MeV neq cm-1

• Charge Multiplication when bias >150V (1015)

• Noise ~ constant until > 250V

• 3D Signal >> Planar Signal (higher voltage)100 150 200 250 300 350 400
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* M. Koehler et al., 6th Trento Workshop 2011

*



14

Mapped CCE with scanned laser 

Experimental setup:

• Space-resolved relative signal

• Motorised x-y stages, 4µm laser spot scanned in 2μm steps

• IR laser, 974 nm wavelength, absorption length: ~90μm (in Si, T=-20°C)

Laser scanning

• 3D un-irradiated @ 77V

• p+ column evident 

• Uniform charge collection outside 

of column position

Scanned area Mapped charge collection response
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Mapped CCE with scanned laser 

Laser scanning

Bias:260V

Fluence: 2x1015 1 MeV neq cm-2 

Sr-90 measured ~137% of Qo collected

High field 

region

Low field 

region

• p+ column evident 

• Non-uniform charge 

collection outside of column 

position

• Area of low charge collection 

between the n+ contacts 

were a low field is present, 

greater probability of charge 

trapping
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Charge Multiplication - simulations

TCAD

Electric Field

(V/cm)

Electric Field

(V/cm)

MIP 1

MIP 2

Vbias = 300 V | Fluence = 2·1015 n/cm2 | T = -10ºC

• Charge multiplication occurs along column length

• Work on-going on low field region

NSS 2011 -"Simulations of charge multiplication effect in 3D-DDTC silicon strip detectors"
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Conclusions

• Precision scans of the pixel performed, charge deposition mapped 

- Full charge collection from 35µm active Si above column

• High efficiency across pixel matrix

- 93.0±0.5% @ 0o, Full pixel efficiency, 99.8±0.5%, at an angle of 10o

• Large decrease in charge sharing compared to planar

- MIPs that create clusters in sensor: 59%  in planar, 14% in 3D

• Good electrical performance after irradiation 

- inter-strip resistance of 100MΩ

• Higher collected charge at modest voltages for 3D

- 47% of Qo collected in 3D @150V, 30% in planar @1,000V

• Charge multiplication in 3D irradiation device. 

• Spatially resolved laser scanning uniform charge collection after irradiation

• Simulations can predict charge multiplication in irradiated devices 
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Mapped CCE with scanned laser 

Bias:150V

Fluence: 1x1015 1 MeV neq cm-2 

Sr-90 measured ~100% of Qo collected

Laser scanning
• Two p+ columns evident 

• Non-uniform charge 

collection outside of column 

position

• Area of low charge collection 

between the n+ contacts 

were a low field is present

• Low field areas have greater 

probability of charge trapping
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X-ray test beam: Pixel Maps 

• 77.5µm square scans

• 2.5µm steps

• Background subtracted 

• Interpolated

N-Type
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TCAD model physics used

Physics Model

Mobility Doping dependance, High Electric field saturation

Generation and Recombination Doping dependant Shockley-Read-Hall Generation recombination, 

Surface recombination model

Impact ionization University of Bologna impact ionization model

Tunneling Band-to-band tunneling, Hurkx trap-assisted tunneling

Oxide physics Oxide as a wide band gap semiconductor for mips (irradiated), 

interface charge accumulation

Radiation model Acceptor/Donor states in the band gap (traps)

J.P. Balbuena et al., 6th Trento Workshop 2011
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X-ray test beam: Charge Sharing

Precision scans of the Pixel cell response of double sided 3D Pixel detectors to pion and 

X-ray beams. 2011 JINST 6 P05002
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SI Beam Telescope

Beam Test Measurements With Planar and 3D Silicon Strip Detectors Irradiated to 

sLHC Fluences. Submitted to IEEE Trans. Nucl. Sci., DOI 10.1109/TNS.2011.2126598 
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Irradiated devices: double depletion

Charge collection studies and electrical measurements of heavily irradiated 3D Double-

Sided sensors and comparison to planar strip detectors. R. Bates et al., submitted to IEEE


