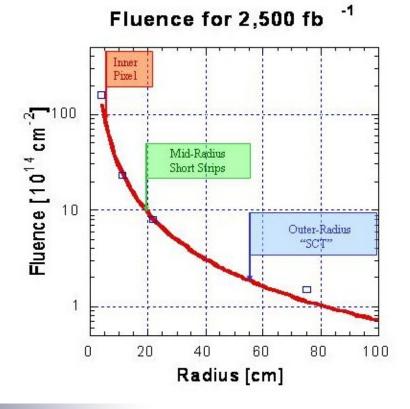


Old title: 3D pixel devices; design, production and characterisation in test beams

Characterisation of Glasgow/CNM double-sided 3D sensors

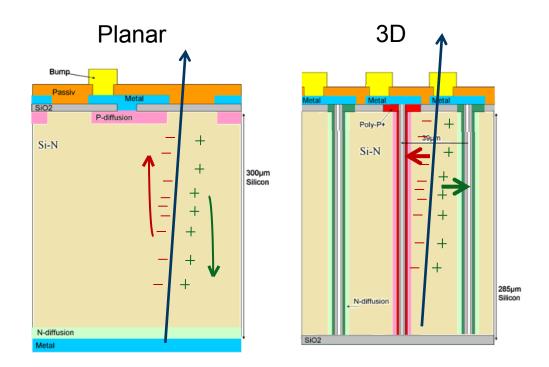

Aaron Mac Raighne^a; K. Akiba⁹, J. P. Balbuena^c, R. Bates^a, M. van Beuzekom⁹, J. Buytaert^d, P. Collins^d, M. Crossley^d, R. Dumps^d, L. Eklund^a, C. Fleta^c, A. Gallas^e, M. Gersabeck^a, V.V. Gligorov^a, M. John^f, M. Köhler^b, M. Lozano^c, D. Maneuski^a, U. Parzefall^b, D. Quirion^{c,} R. Plackett^d, C. Parkes^a, G. Pellegrini^c, E. Rodrigues ^a, G. Stewart ^a.

^a School of Physics and Astronomy, University of Glasgow, Scotland, U.K.
^b Physikalisches Institut, Universitt Freiburg, Germany
^c Instituto de Microelectr´onica de Barcelona, IMB-CNM-CSIC, Barcelona, Spain
^d CERN CH-1211, Gen`eve 23, Switzerland
^e Facultad de Fisica, University of Santiago de Compostela, Santiago de Compostela, Spain
^f Dept. of Physics, University of Oxford, Oxford, U.K.
^g Nationaal Instituut Voor Subatomaire Fysica, Amsterdam, Netherlands

TIPP, Chicago, June 2011.

Motivation for radiation hard sensors

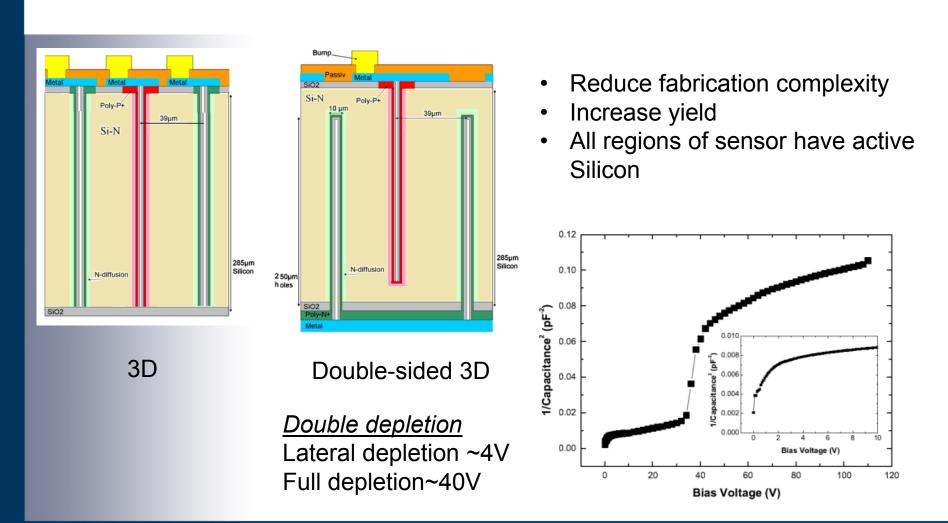
- Fact of 10 luminosity upgrade of LHC to HL-LHC to extend physics programme
- Radiation damage increase in proportion to integrated luminosity
- Need to optimise silicon detector design to survive


#203: Silicon Detectors for High Luminosity Colliders. RD50 Status Report. Ulrich Parzefall

- Radiation hardness requirements (including safety factor of 2)
 - $2 \times 10^{16} \, n_{eq}$ /cm² for the innermost pixel layers
 - $1 \times 10^{15} n_{eq}$ /cm² for the innermost strip layers

3D sensors

- Greater signal charge due to faster collection time (less trapping)
- Reduced power consumption
 due to lower depletion voltages
- Reduced charge sharing
- Active edge technology: largearea tiled 'edge-less' detectors



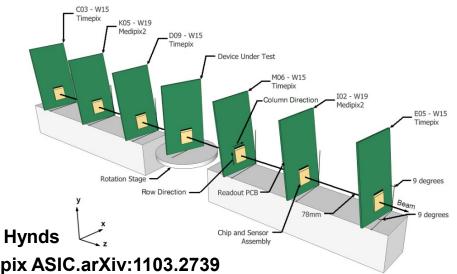
Drawbacks

- increased complexity, yield issues
- areas of inefficiency

Double sided 3D sensors



4

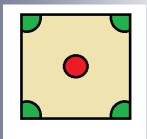


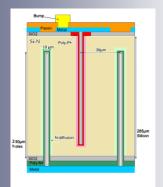
Precision scans of a 3D pixel cell

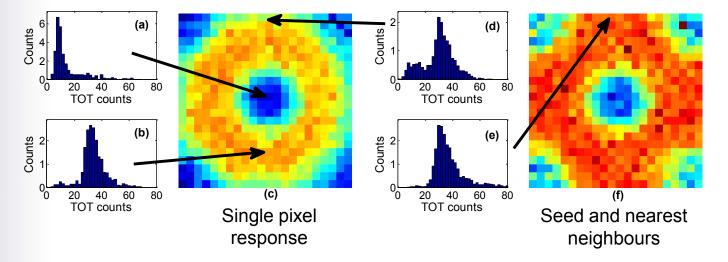
Timepix Telescope

- TimePix/Medipix chips: 256*256 55µm square pixels
- Energy deposition provided by Time over Threshold in TimePix
- 120 GeV pion beam from SPS
- Device under test (DUT): double sided 3D N-type pixel sensor
- DUT on high resolution rotational and translational stage

For more details on telescope see

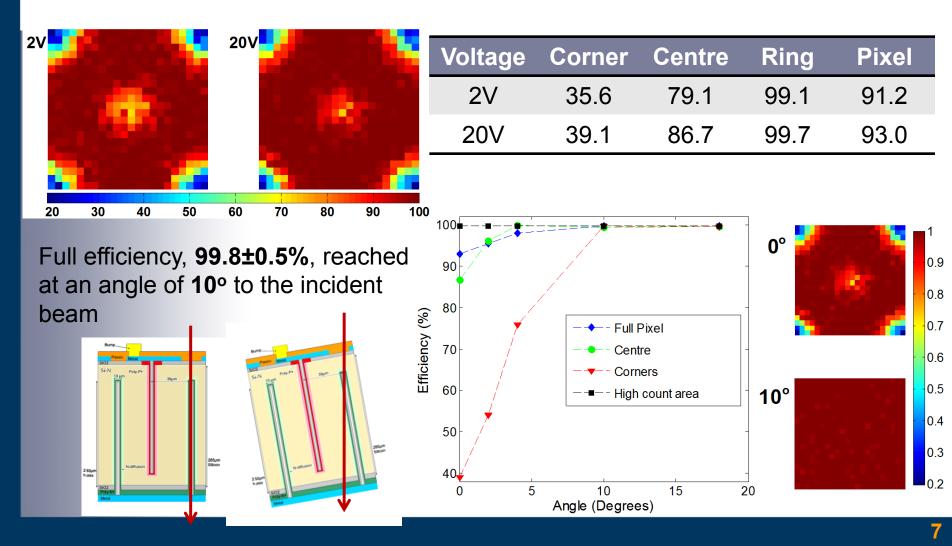

- # 147 The LHCb VELO upgrade. Daniel Hynds
- Charged Particle Tracking with the Timepix ASIC.arXiv:1103.2739


Precision scans of the Pixel cell response of double sided 3D Pixel detectors to pion and **5** X-ray beams. 2011 JINST 6 P05002


Precision scans: Charge deposition

Timepix Telescope

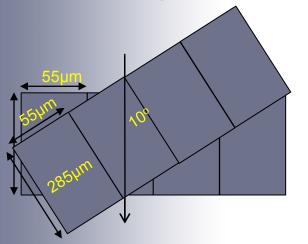
Mean energy deposited mapped onto pixel cell



- Area removed from columns exhibits standard Landau shape
- Charge deposition full/column ration = 35/285µm ratio
- Full cluster energy reconstruction

Precision scans: Efficiency

Timepix Telescope


Precision scans: Spatial resolution

Timepix Telescope

Binary resolution = $55\mu m / \sqrt{12} = 15.9\mu m$

	3D		Planar *	
Degrees	0°	10°	0°	10°
Spatial resolution	15.8±0.1	9.18±0.1	10.15±0.1	5.86±0.1

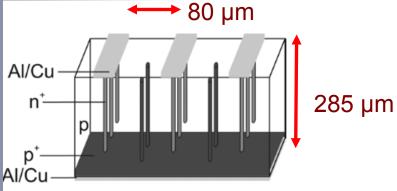
Resolutions shown can be and have been improved with eta corrections and the removal of track extrapolation error

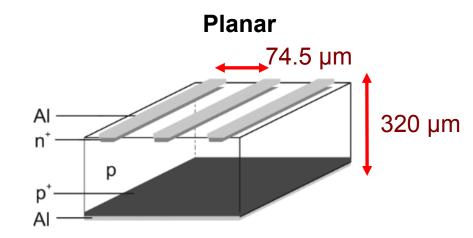

- Hits that only affect one pixel have limited resolution
- Tilting the sensor means all tracks charge share
- Can use ToT information in centroid, CoG calculations
- Maximum spatial resolution at 10° *

* Charged Particle Tracking with the Timepix ASIC. arXiv:1103.2739

Precision scans: Charge sharing

Timepix Telescope


59% of incident particles multiple pixel hits in the planar sensor.14% of incident particles multiple pixel hits in the 3D sensor.

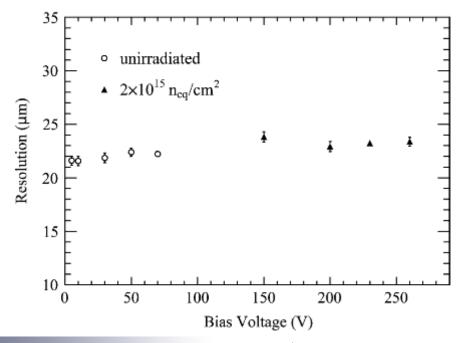


Strip devices

Electrical measurements

0.5 1,2,5,10,20 x10¹⁵ 1 MeV n_{eq} cm⁻² (±20%)

Karlsruhe Institute of Technology, -20°C, 26 MeV protons


3D devices P-stop isolation before and after irradiation to $10x10^{15}$ Inter-strip resistance $100M\Omega$ Leakage current scales as expected

	Fluence (1x10 ¹⁵ 1MeV n _{eq} cm ⁻²)	Lateral depletion voltage (V)	
	0	4	
5	0.5	15 ± 5	
	5	100 ± 10	
	10	145 ± 10	

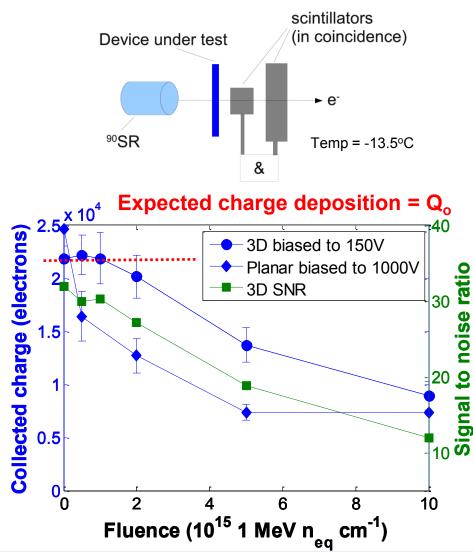
Spatial resolution

Silicon Beam Telescope

- Resolution before and after irradiation close to binary resolution
- Summer 2011 highly irradiated sensors in TimePix Telescope

3D binary resolution = 74.5 μ m / $\sqrt{12}$ = 23.1 μ m

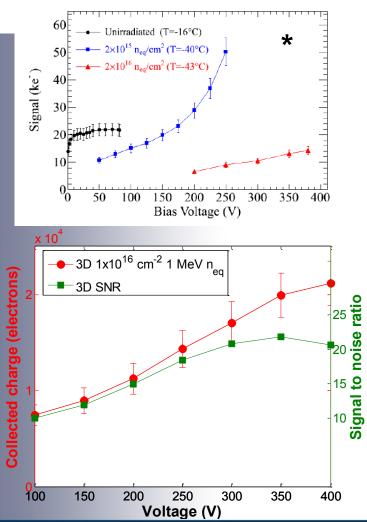
The spatial resolutions contain telescope alignment error


Beam Test Measurements With Planar and 3D Silicon Strip Detectors Irradiated to sLHC Fluences. Submitted to IEEE Trans. Nucl. Sci., DOI 10.1109/TNS.2011.2126598

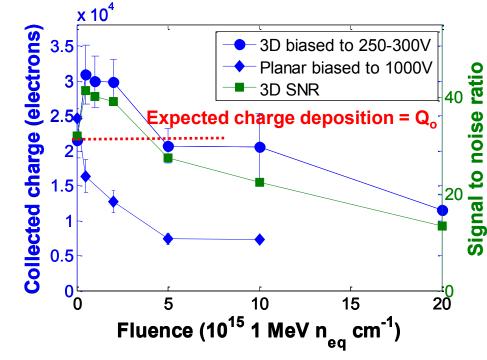
Charge collection efficiencies (150V)

Sr-90 electrons

- Large charge collection at high fluences and modest voltages
- 3D charge collection of 47% of Q_{o} @10^{16} fluence at 150V
- •This has been simulated using TCAD without any high field effects present and shows very good agreement
- Noise is constant giving a signal to noise value of >10 @ 10¹⁶ fluence at 150V
- Compared to planar sensor higher charge collected
- Planar charge collection, 30% of Q_o @10¹⁶ fluence at 1000V



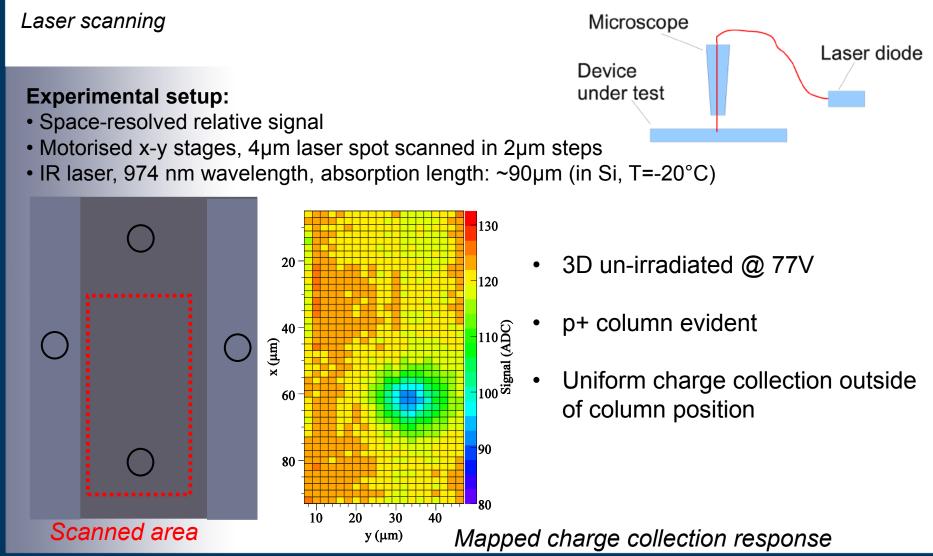
Charge collection studies and electrical measurements of heavily irradiated 3D Double- 12 Sided sensors and comparison to planar strip detectors. R. Bates et al., submitted to IEEE



Charge collection efficiencies (~250-300V)

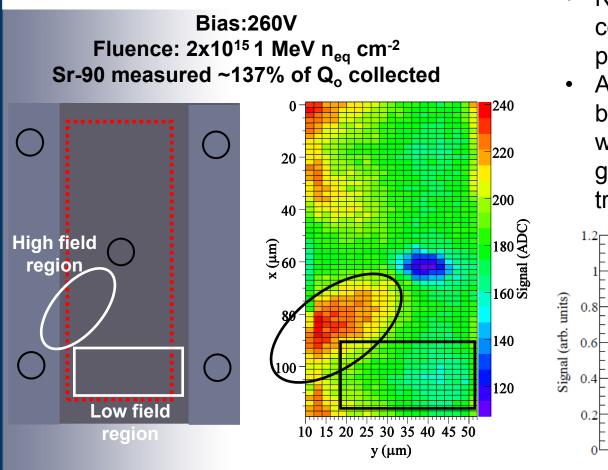
Sr-90 electrons

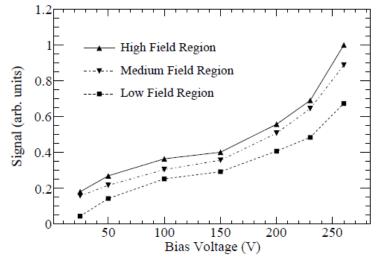
Charge multiplication through impact ionisation



- 52% of Q_o collected at 20x10¹⁵ 1MeV n_{eq} cm⁻¹
- Charge Multiplication when bias >150V (10¹⁵)
- Noise ~ constant until > 250V
- 3D Signal >> Planar Signal (higher voltage)

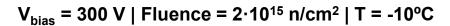
* M. Koehler et al., 6th Trento Workshop 2011

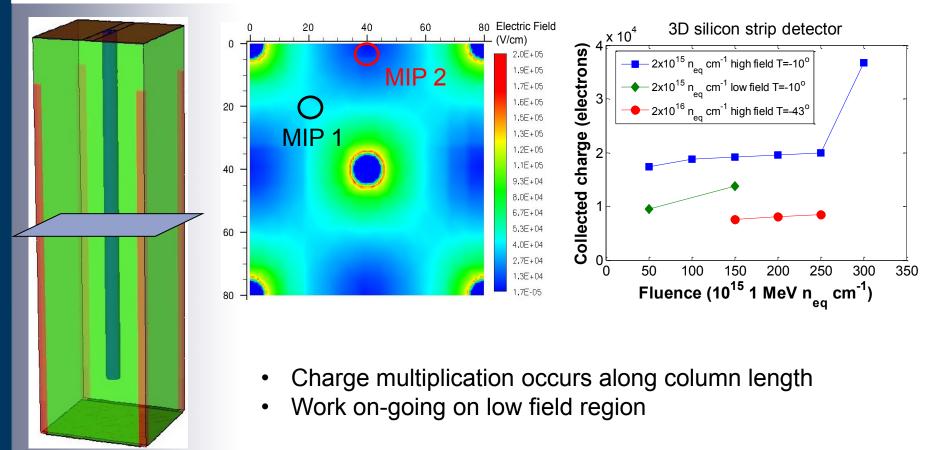

Mapped CCE with scanned laser



Mapped CCE with scanned laser

Laser scanning


- p+ column evident
- Non-uniform charge collection outside of column position
- Area of low charge collection between the n+ contacts were a low field is present, greater probability of charge trapping

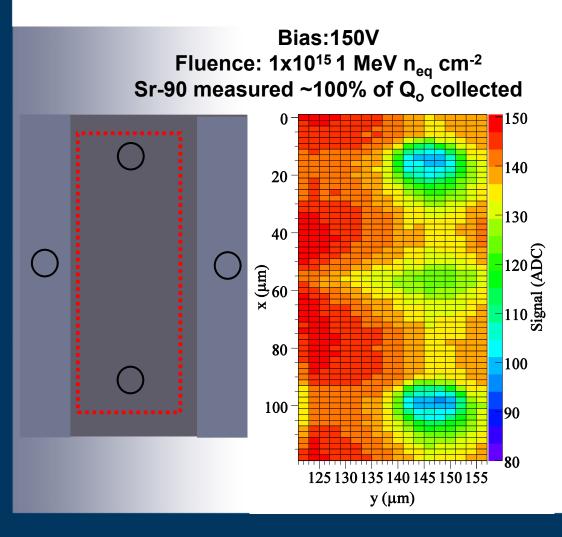


Charge Multiplication - simulations

TCAD

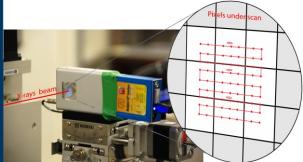
NSS 2011 - "Simulations of charge multiplication effect in 3D-DDTC silicon strip detectors" ¹⁶

epix Telescop


scanning

- Precision scans of the pixel performed, charge deposition mapped
 - Full charge collection from $35\mu m$ active Si above column
- High efficiency across pixel matrix
 - 93.0±0.5% @ 0°, Full pixel efficiency, 99.8±0.5%, at an angle of 10°
- Large decrease in charge sharing compared to planar
 - MIPs that create clusters in sensor: 59% in planar, 14% in 3D
- Good electrical performance after irradiation
 - inter-strip resistance of $100M\Omega$
- Higher collected charge at modest voltages for 3D
 - 47% of Q_o collected in 3D @150V, 30% in planar @1,000V
- Charge multiplication in 3D irradiation device.
- Spatially resolved laser scanning uniform charge collection after irradiation
- Simulations can predict charge multiplication in irradiated devices

Mapped CCE with scanned laser

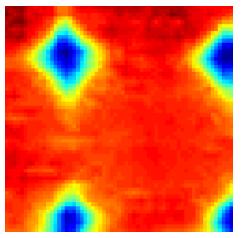

Laser scanning

- Two p+ columns evident
- Non-uniform charge collection outside of column position
- Area of low charge collection between the n+ contacts were a low field is present
- Low field areas have greater probability of charge trapping

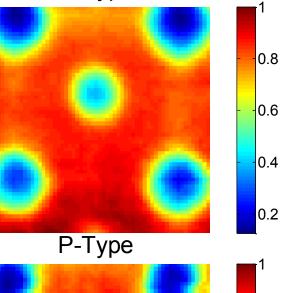
X-ray test beam: Pixel Maps

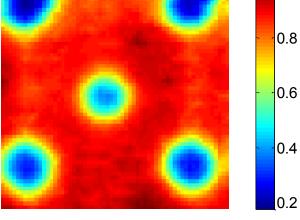
- 77.5µm square scans
- 2.5µm steps
- Background subtracted

0.8


0.6

0.4


0.2

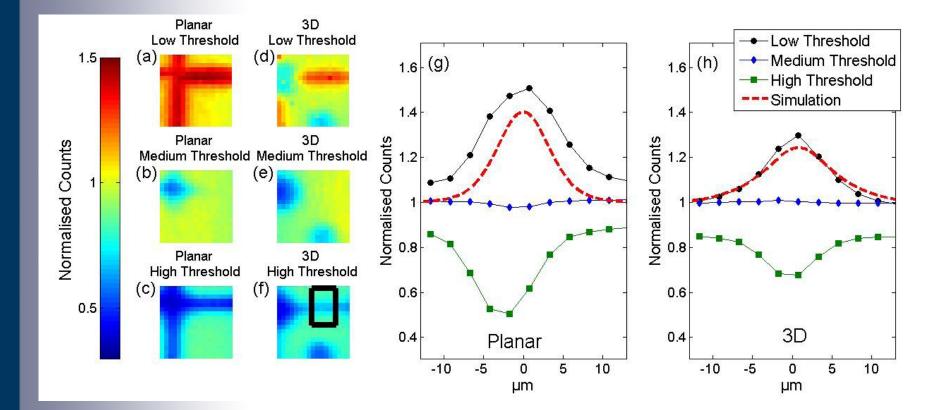

Interpolated

Planar

N-Type

TCAD model physics used

Physics	Model		
Mobility	Doping dependance, High Electric field saturation		
Generation and Recombination	Doping dependant Shockley-Read-Hall Generation recombination, Surface recombination model		
Impact ionization	University of Bologna impact ionization model		
Tunneling	Band-to-band tunneling, Hurkx trap-assisted tunneling		
Oxide physics	Oxide as a wide band gap semiconductor for mips (irradiated), interface charge accumulation		
Radiation model	Acceptor/Donor states in the band gap (traps)		


P-TYPE RADIATION DAMAGE MODEL

Defect's energy (eV)	Introduction rate (cm^{-1})	Electron capture cross- section (cm^{-2})	Hole capture cross-section (cm^{-2})
$E_c - 0.42$	1.613	2.e-15	2e-14
$E_{\rm c} - 0.46$	0.9	5e-15	5e-14
$E_{\rm c} - 0.10$	100	2e-15	2.5e-15
$E_v + 0.36$	0.9	2.5e-14	2.5e-15

J.P. Balbuena et al., 6th Trento Workshop 2011

X-ray test beam: Charge Sharing

Precision scans of the Pixel cell response of double sided 3D Pixel detectors to pion and 21 X-rav beams. 2011 JINST 6 P05002

SI Beam Telescope

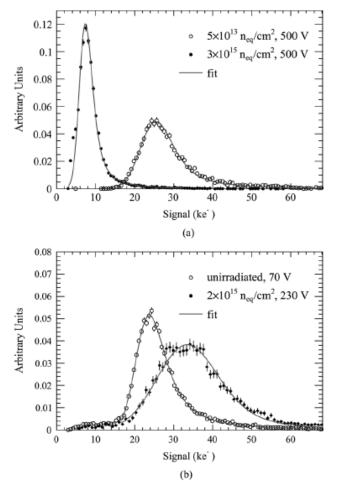


Fig. 2. Normalized signal distributions for different irradiation fluences (a) measured with planar detectors and (b) measured with 3D detectors. The fit superimposed is a convolution of a Landau function and a Gaussian.

Fig. 3. Signal as a function of the applied bias voltage for different irradiation fluences (a) measured with the planar sensors and (b) measured with the 3D sensors. The errors are dominated by a systematic contribution due to the calibration uncertainty.

Beam Test Measurements With Planar and 3D Silicon Strip Detectors Irradiated to sLHC Fluences. Submitted to IEEE Trans. Nucl. Sci., DOI 10.1109/TNS.2011.2126598

Irradiated devices: double depletion

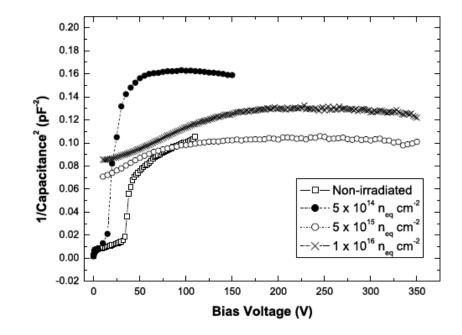


Fig. 6. Strip to back plane capacitance as a function of bias voltage measured after four different irradiation levels, namely; 0, 0.5, 5 and 10 x 10^{15} cm⁻² 1 MeV n_{eq}. The four curves are labeled on the figure.

Charge collection studies and electrical measurements of heavily irradiated 3D Double- 23 Sided sensors and comparison to planar strip detectors. R. Bates et al., submitted to IEEE