

CMS Silicon Strip Tracker Performance

J-L Agram Université de Haute-Alsace

On behalf of the CMS collaboration

Technology and Instrumentation in Particle Physics 2011 9-14 Jun 2011, Chicago

CMS Silicon Strip Tracker

- 2.4m diameter, 5.5m long, 198m², 15148 modules,
 9.3 million channels, in a 3.8T solenoïd
- must provide low occupancy, fast readout, high precision, radiation hardness
- double sided layers : stereo angle of 100 mrad (5.7 deg)

Modules

- * sensors of p+ strips on n-bulk, thickness of 320 and 500 μm
- * 15 types of sensors, 512 or 768 strips, pitch 80-205 μm
- * pitch depend of R : keep low occupancy and good resolution
- analogue readout

Readout

APV

module

APV25 chip :

- pre-amplification
- * fast shapping :
 - Peak mode : rise time of 50 ns, 1 sample
 - Deconvolution mode :
 - standard mode in collision
 - combine 3 samples, shorter pulse
 - needed but more sensitive to timing and reduced S/N
 - 2 shaper parameters tuned to give expected rise time and shape close to ideal RC-CR curve
- Send information of 128 strips in an analogue frame

Off-detector Front-End Controller (FEC)

- send clock, L1 triggers, slow control commands
- time adjustement
 - Synchronization of all modules to each other, looking at tick mark sent every 35 LHC clock

Timing

- global latency scan by steps of 25ns, synchronize tracker to central trigger
- fine delay scan by steps of 1ns
 - per detector layer
 - delay corrected for time of flight
- mis-timing of 5 ns would give ~6% less signal in TOB

Signal treatment

- * Data sent via optic link to Front End Driver (FED) processing board
 - laser tuned to optimize ADC range
- * FED digitize signal and apply Zero Suppression
 - analogue baseline level tuned for a MIP signal at 1/3 of ADC range
 - special runs in absence of signal to measure pedestal and noise for each strip
 - Noise depends on strip length, temperature
 - calibration each times conditions have changed (hardware, temperature)

Gain calibration

tick mark calibration

- First calibration using tick mark height and tuning it to 640 ADC counts
 - does not take into account differences at the sensor level

particle calibration

- use path length corrected on-track cluster charge
- normalize to 300 ADC counts/mm : expected value for MIP with calibration of 270e-/ADC count

Clusters and hits

Cluster from 3 thresholds algorithm :

- seeded from strips with charge > 3 times the strip noise
- add neighbours with charge > 2 times the strip noise
- cluster kept if charge > 5 times cluster noise (quad. sum of strips noise)
- need of strip noise value
- Hit : cluster with associated position and errors
 - position from centroid of strips signal height
 - corrected from magnetic field effect

Lorentz Angle

ield, direction Due to m * is tilted by the of charge calmers Lorentz angle Ε maximal effect in barrel : $B \perp E$ *

- Systematic shift in cluster position *
- Study cluster width versus particle * crossing angle
- Minimum cluster width for Lorentz * angle

	tan Θ_L	δx	
TIB	0.07±0.02	~I0µm	
TOB	0.09±0.01	01 ~20µm	

:
$$\delta x_{\text{cluster}} = \frac{t}{2} \cdot \tan \Theta_L$$

Charge collection

- S/N : important variable for monitoring of tracker, done run by run
- computed from on-track clusters corrected for path lenght
- thick sensors collect more than thin

	TIB	TID	ТОВ	TEC+ thin	TEC+ thick
MPV	19.4	18.5	22.5	19.4	23.9

Module efficiency

- 98.1% of channels in operation
- For active channels : 99.8% efficiency
 - measured from high purity tracks
 - tracking without the layer studied
 - module crossed should contain a hit
- Done at module level, once per week, useful to spot problems

Hit resolution

- reconstruct track without the layer considered
- Use overlapping modules
- Distance between 2 hits less sensitive to track extrapolation, interactions with material
- * Compare Δx_{hit} to Δx_{pred}
- Resolution depends of strip length, pitch, particle incidence angle

- Wide linear range that provide energy loss measurement
- use protons in 0.7-1.0 GeV/c range to fit : $\frac{dE}{dx} = K \frac{m^2}{p^2} + C$
- From parameters can extract mass spectrum : D peak visible (not in Pythia)
- * used for search of heavy stable charged particles, reconstruction of low mass resonances giving charge hadrons ($Φ→K^+K^-$)

Tracking performance

- Basic track distributions : good data/simulation agreement
- Reconstruction of resonances with good precision :
 - $K^0_S \rightarrow \pi\pi$, $\Lambda^0 \rightarrow p\pi$, $K^*(892)^{\pm} \rightarrow K^0_S\pi$, $\Xi^{\pm} \rightarrow \Lambda^0\pi$, $\Sigma(1385)^{\pm} \rightarrow \Lambda^0\pi$, $\Xi(1530)^0 \rightarrow \Xi\pi$ • The dip at the ~ -1.5 gets much smalle \Im_{70000}^{\bullet}
 - $\Phi(1020) \rightarrow KK , D^0 \rightarrow K\pi ,$ $D^* \rightarrow D^0 \pi^*, D^{200} \rightarrow K\pi\pi , \Omega^- \rightarrow \Lambda^0 K$
- Reconstruction of conversion and nuclear interactions

Conclusion

- Largest silicon tracker ever build
- Well calibrated and understood
- Efficient operation and excellent performance
- Allows good tracking, vertexing and physics analyses

Detector monitoring

- Express Stream
 - First reco of data, within 2 hours after run end
 - a part of triggers only
 - used for online and first offline DQM
 - use masks taking into account hardware cabling
- Prompt Reco
 - First reco of all data, within 48 hours
 - Delay allows to use masking of strips and modules from a noisy channel analysis on run by run basis
 - Used for runs certification
- * Other checks on regular basis :
 - spy channels : possibility to read data from FED before ZS
 - bias HV scan : to study evolution with radiation dose

SiStrip Report for Good Detector Fraction

SiStrip Report for Signal-to-Noise

Alignment

- track-based algorithms
 - Millepede II : global method, simultaneous fit of alignment parameters
 - Hit and Impact Point (HIP) : local approach, look at each module separately, large number of iterations for big misalignment
 - Used both in sequence
 - use cosmics (vertical tracks well suited for barrel) and collision events
- Validation looking at χ² of tracks, track-to-hits and track-to-vertex residuals
- Start to take into account bowing of sensors, kink between 2 sensors on same module

Distribution of Median of Residuals

from hits

