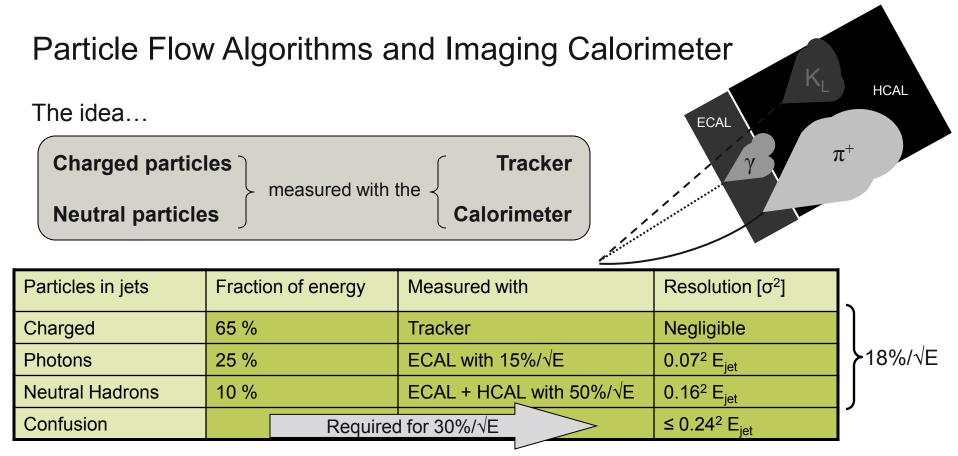
Imaging Calorimeters

-- what have we learned so far


Lei Xia Argonne National Laboratory

Motivation: physics at the next lepton collider

Process	Vertex	Tracking		Calorimetry		Fwd		Very Fwd	Integration				Pol.	
	σ_{IP}	$\delta p/p^2$	ε	δE	$\delta \theta, \delta \phi$	Trk	Cal	θ^e_{min}	δE_{jet}	M_{jj}	ℓ-Id	V^0 -Id	$Q_{jet/vtx}$	
$ee \rightarrow Zh \rightarrow \ell\ell X$		x									x			
ee ightarrow Zh ightarrow jjbb	x	x	x			x				x	x			
$ee \rightarrow Zh, h \rightarrow bb/cc/ au au$	x		x							x	x			
$ee \rightarrow Zh, h \rightarrow WW$	x		x		x				x	x	x			
$ee ightarrow Zh, h ightarrow \mu \mu$	x	x									x			
$ee \rightarrow Zh, h \rightarrow \gamma\gamma$				x	x		x							
$ee \to Zh, h \to \mathrm{i} nvisible$			x			x	x							
$ee \rightarrow \nu \nu h$	x	x	x	x			x			x	х			
$ee \rightarrow tth$	x	x	x	x	x		x	x	x		x			
ee ightarrow Zhh, u u hh	x	x	x	x	x	x	x		x	x	x	x	x	x
$ee \rightarrow WW$										x			x	
$ee \rightarrow \nu \nu WW/ZZ$						x	x		x	x	x			
$ee \rightarrow \tilde{e}_R \tilde{e}_R$ (Point 1)		x						x			x			x
$ee ightarrow ilde{ au}_1 ilde{ au}_1$	x	x						x						
$ee ightarrow ilde{t}_1 ilde{t}_1$	x	x							x	x		x		
$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1$ (Point 3)	x	x			x	x	x	x	x	i i			· · · · ·	
$ee \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_3^0$ (Point 5)									x	x				
ee ightarrow HA ightarrow bbbb	x	x				-				x	x		2	
$ee ightarrow ilde{ au}_1 ilde{ au}_1$			x											
$\chi_1^0 \rightarrow \gamma + E$					x									
$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi_{soft}^{\pm}$			x					x						
$ee \rightarrow tt \rightarrow 6 \ jets$	x		x						x	x	x			
$ee \rightarrow ff \; [e, \mu, \tau; b, c]$	x		x				x		x		x		x	x
$ee \rightarrow \gamma G \text{ (ADD)}$				x	\mathbf{x}			x						x
$ee \to KK \to f\bar{f}$		x									x			
$ee \rightarrow ee_{fwd}$						x	x	x						
$ee \rightarrow Z\gamma$		x		x	x	x	x							

Required: excellent Jet energy/mass resolution **Solution**: Particle Flow Algorithm (PFA)

Requirements for detector system

- \rightarrow Need excellent tracker and high B field
- \rightarrow Large R_I of calorimeter
- → Calorimeter inside coil

thin active medium

- \rightarrow Calorimeter as dense as possible (short X₀, λ_1) \int
- → Calorimeter with **extremely fine segmentation**

Imaging Calorimeter: see the detail of every particle shower

PFA: current status

• Relevant jet energy scale

√s	#fermions	Jet energy	
250 GeV	4	~60 GeV	
500 GeV	4 – 6	80 – 125 GeV	ILC - like
1 TeV	4 – 6	170 – 250 GeV	
3 TeV	6 – 8	375 – 500 GeV	CLIC - like

• PFA performance: PandoraPFA + ILD + uds jets

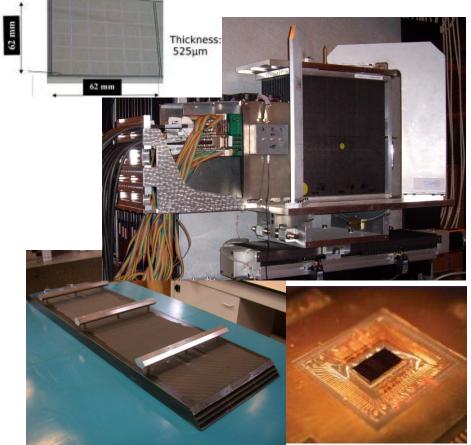
	EJET	$\sigma_{\rm E}/{\rm E} = \alpha/\sqrt{{\rm E}_{\rm jj}}$ cos θ <0.7	σ _E /E _j	* Equivalent stochastic term			
	45 GeV	25.2 %	3.7 %	shown for comparison, PFA			
rms ₉₀	100 GeV	29.2 %	2.9 %	resolution is not stochastic,			
	180 GeV	40.3 %	3.0 %	CONFUSION			
	250 GeV	49.3 %	3.1 %				
	Tree of the second s						

ILC Goals: ~3.5 % jet energy resolution for 50 – 250 GeV jets

CLIC Goals: ~3.5 % jet energy resolution for 100 – 500 GeV jets

Credit: Mark Thomson, CALOR'2010 talk

PFA is up to the task ← if we DO have an imaging calorimeter system


Imaging calorimeter R&D: current status

Most R&D efforts are within the CALICE collaboration* 2005 PFA Calorimeter Calorimeter for ILC 2006-07 ECAL HCAL 2008-09 Tungsten 2010-11 Tungsten Iron Year of beam test analog digital analog digital Micro MAPS Scintillator Silicon Scintillator RPC **GEM** megas

* Except SiD Si/W ECal effort

Readout cell size: 144 - 9 cm² \rightarrow 4.5 cm² \rightarrow 1 cm² \rightarrow 0.25 cm² \rightarrow 0.13 cm² \rightarrow 2.5x10-5 cm²Technology:Scintillator +
SiPM/MPPCScintillator +
SiPM/MPPCGas detectors Silicon
SiliconSilicon (MAPS)
Silicon

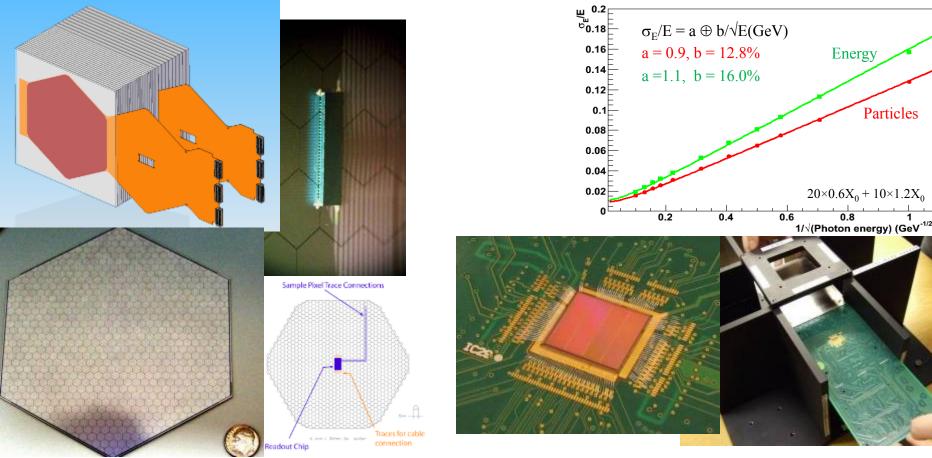
ECal efforts

CALICE Si/W ECal:

6x6 PIN diode matrix Resistivity: 5kΩcm - 80 (e/hole pairs)/µm

- Physics prototype* tested in beam (1x1cm²)
- Data analysis well advanced
- R&D/construction for Technical prototype**
- Readout cell reduced to 0.25cm² for 2nd prototype

CALICE Sci/W ECal:

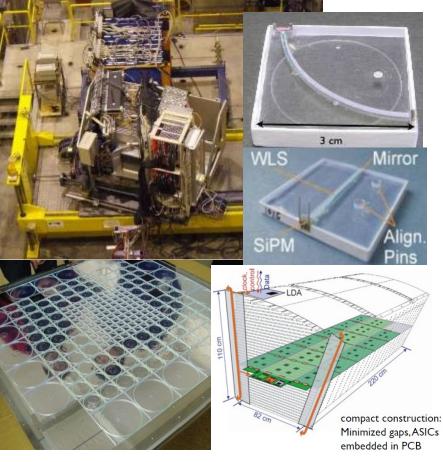

• Physics prototype tested in beam (1x4.5cm²)

PCB

- Data analysis done
- R&D for technical prototype

* Physics prototype: proof of principle device ** Technical prototype: prototype close to a real detector TIPP 2011, Chicago

ECal efforts


SiD Si/W ECal:

- Target at very compact readout and small cell (~0.13cm²)
- Address all technical issues from the beginning
- Push technical limits in many aspects
- Total active medium thickness targets at ~1mm
- Test beam module expected soon

CALICE MEPS Digital ECal:

- Extremely small cell size (0.005x0.005cm²)
- Working on sensor R&D
- Did sensor test beam

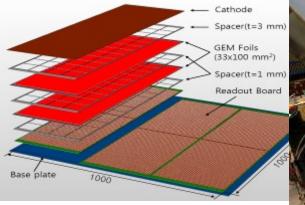
HCal Efforts

CALICE Sci/SiPM Analog HCal (AHCal):

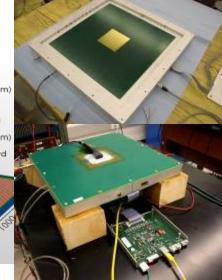
- Physics prototype (Fe) tested in beam (3x3cm²)
- Data analysis well advanced
- Physics prototype (W) beam test this year
- R&D/construction for Technical prototype

CALICE RPC Digital HCal (DHCal):

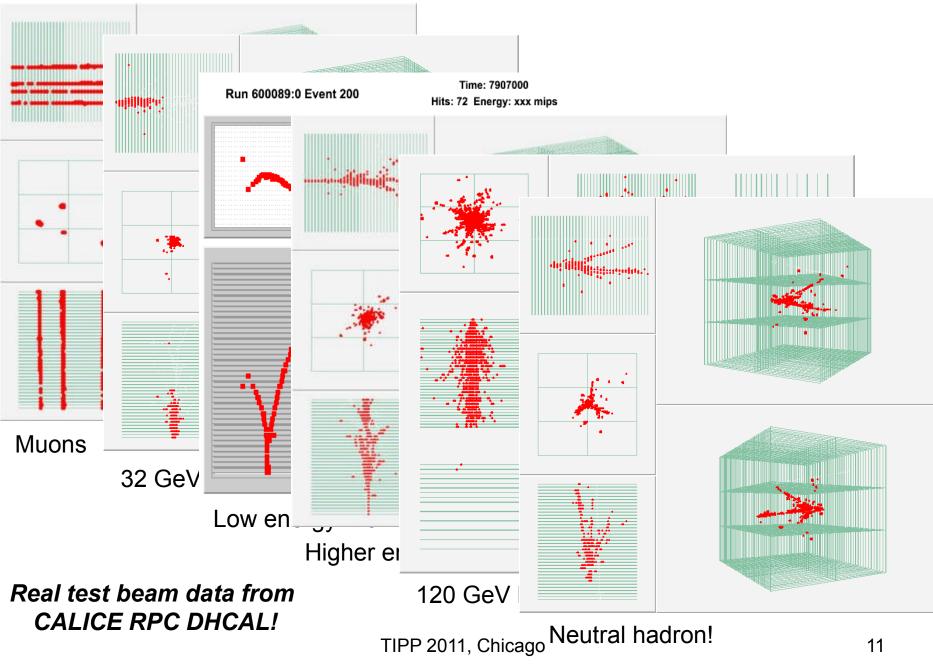
- Large (1m³) prototype (Fe) is being tested in beam (1cm²)
- Embedded Front End readout, 480K (!) readout channels
- Data analysis started
- Beam test with W absorber planned
- R&D for Technical prototype started



CALICE RPC semi-Digital HCal (sDHCal):

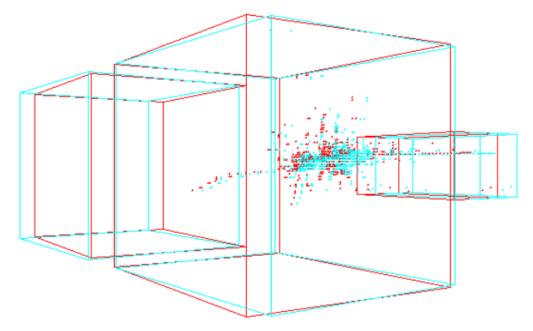

- Large prototype (1m³) under construction (1cm²)
- Beam test expected later this year
- Addressed some technical issues for real detector
- Explore 3-threshold readout

HCal Efforts


CALICE Micromegas/GEM Digital HCal:

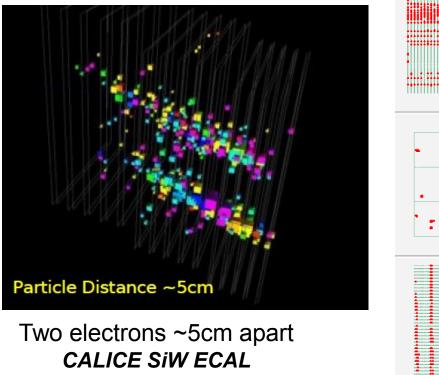
- Prototype layer constructed/expected (1x1cm²)
- Prototype layer beam test done/expected
- Both technologies can handle very high rates

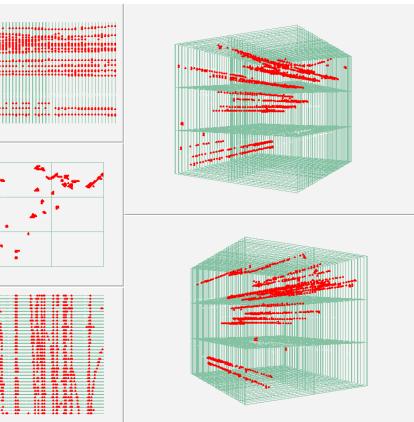
What have we learned from these beautiful devices (so far)?


Will show some nice results, according to my personal taste...

First: let's see the particle showers!

Just for fun: 3-D display is also available!





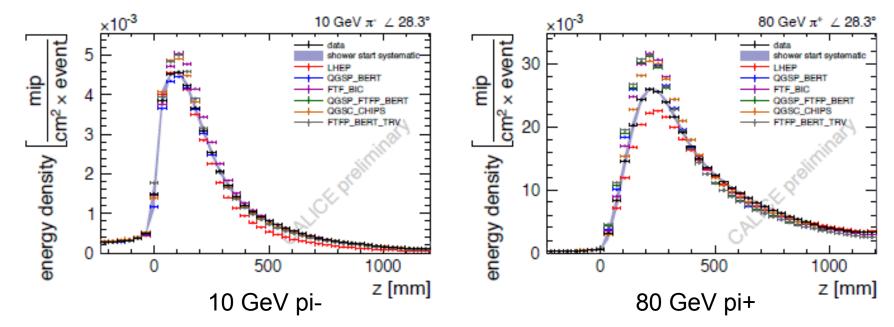
CALICE SIW ECAL + RPC DHCAL + RPC TCMT

Go to <u>http://polywww.in2p3.fr/~jeans/threeD_DispWeb/welcome.html</u> for more fun

Sometimes multiple particles come together...

~20 muons in 1m² area CALICE RPC DHCAL

We have no problem distinguishing these particles

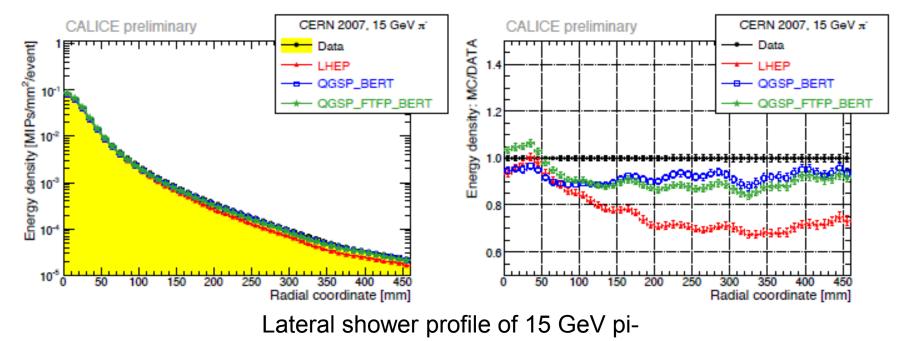

--- a good PFA should have no problem in a calorimeter like this neither!

Shower profile: data/MC comparison

- One of the key roles of the test beam prototypes: provide data to validate hadronic shower simulation
- This is a critical step in PFA validation
- The imaging calorimeter prototypes provided unprecedented details in shower measurement

Longitudinal shower profile

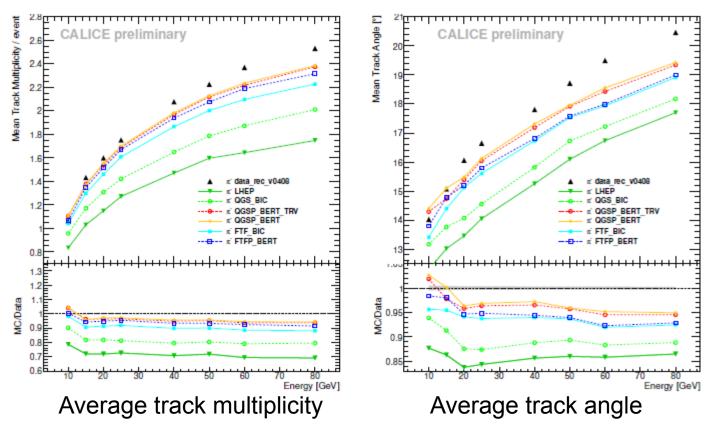
CALICE AHCAL


Longitudinal shower profile measured relative to **shower starting point** (NOT a convolution of showers starting at different depth)

- QGSP_BERT works best at low energy
- None of them work terribly well at high energy

Ref arXiv:1008.2318

Lateral shower profile

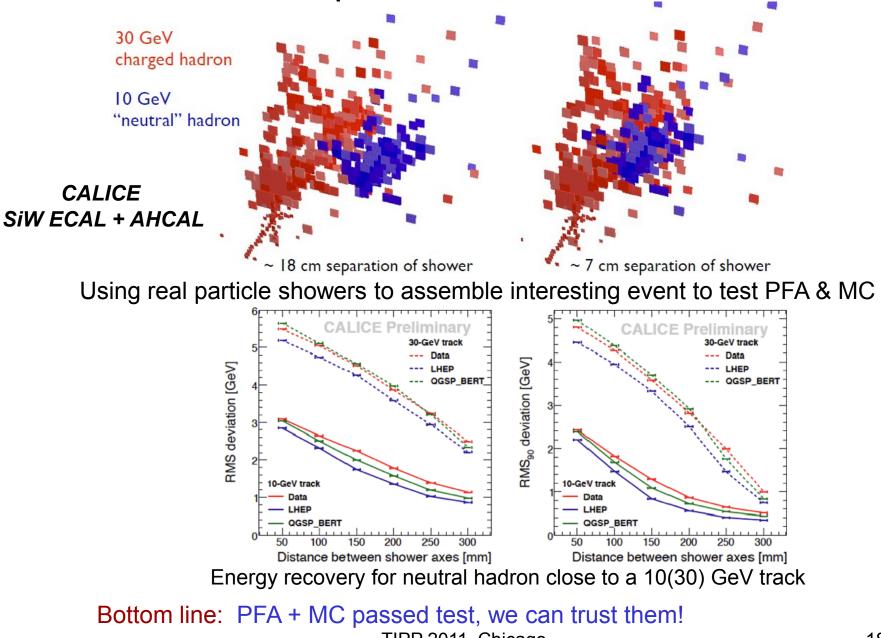

CALICE AHCAL

Lateral shower profile is critical for PFA performance The 'modern' hadronic models works reasonably well

CALICE AHCAL

Shower substructure

3D shower substructure: finding track segments (isolated track, at least 6 layers) Again, some hadronic models are doing pretty well

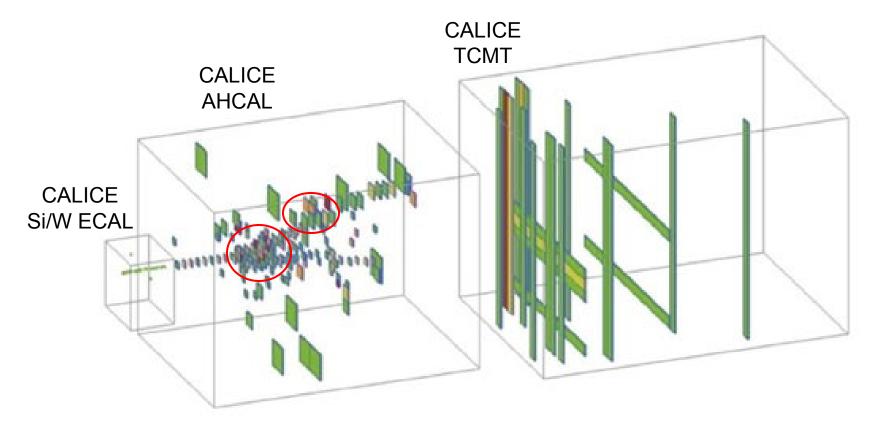

These track segments point to an interesting possibility:

- Using physics data to self-calibrate the imaging calorimeter performance
- CALICE RPC DHCal is currently using similar technique to measure time dependent calibration constant with shower data at the test beam

TIPP 2011, Chicago **Ref** arXiv:1008.2318

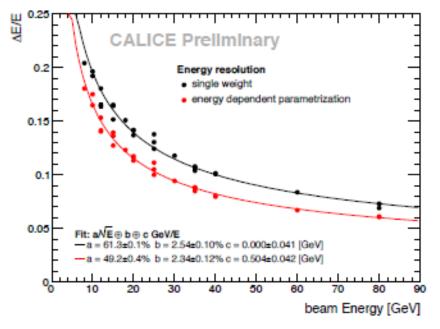
17

Shower separation: test of PFA & MC

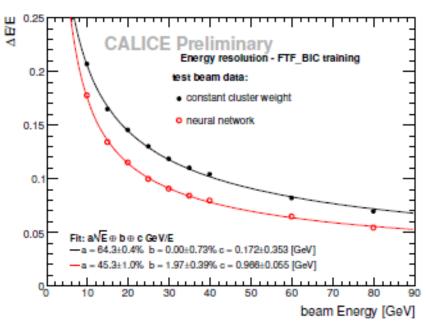


TIPP 2011, Chicago

Ref arXiv:1105.3417


Software compensation

With fine segmentation, software compensation becomes 'easy'

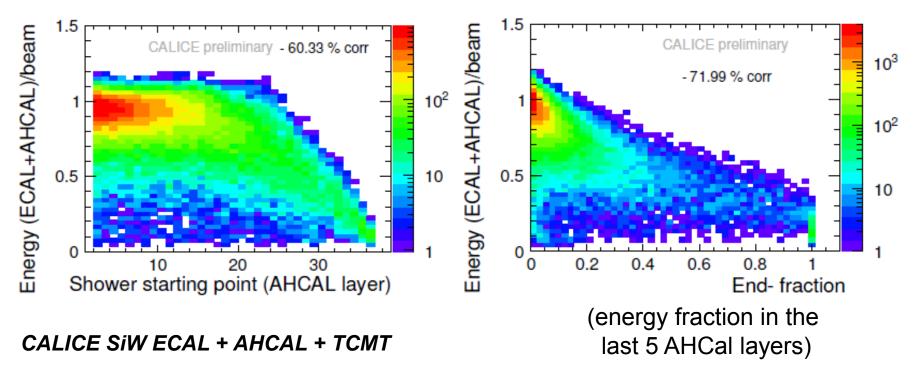

 π^{0} 's can be easily identified within hadronic showers (at least by eye)

Software compensation in CALICE AHCal

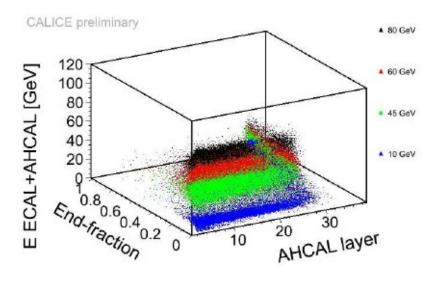
Local software compensation

- Single cell energy density based weights
- Apply to ECal + AHCal + TCMT
- ~20% improvement

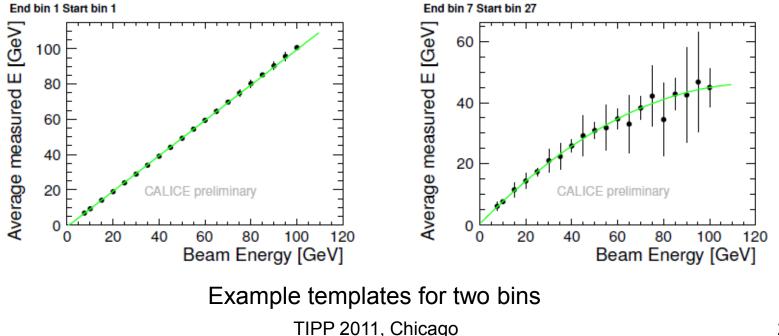
Global software compensation

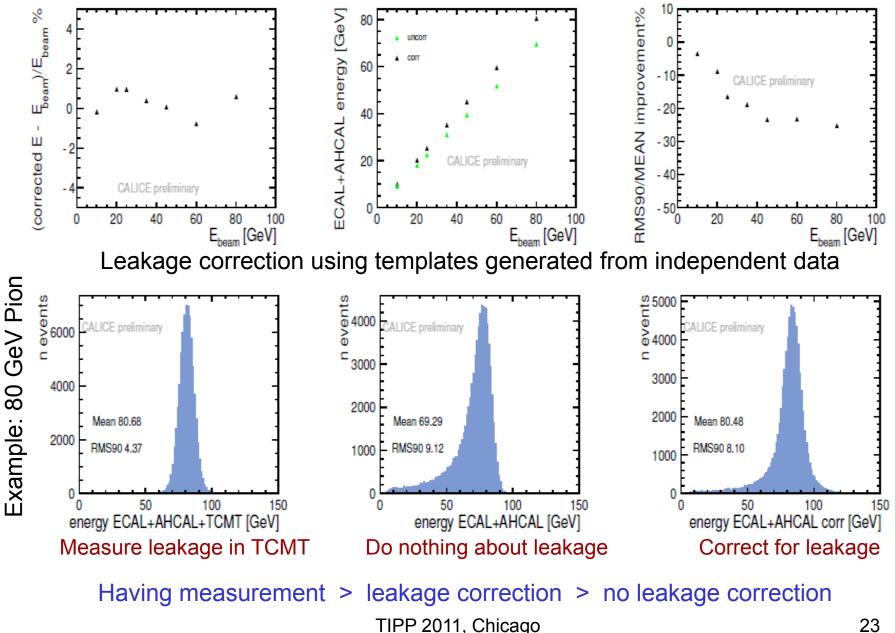

- Use events that didn't shower in ECal
- Define shower with clustering algorithm
- Calculate shower parameters from cluster
- Feed into Neural Net \rightarrow energy estimate
- ~25% improvement

Better single particle energy resolution can further improve PFA performance


Leakage correction

- Ideally, one should build very deep calorimeter
- But this is not always affordable
- Imaging calorimeter enables meaningful leakage correction


Useful variables:


Leakage correction

- A large set of templates is generated according to the correlation among start-layer, end-fraction and observed E
- One template for each (start-layer, end-fraction) bin
- Each template provide a relationship between observed E and beam E
- template generated by MC simulation or independent data set

Leakage correction

Not possible to show you all the nice and unique things of an imaging calorimeter

Didn't even mention the technological advances brought by the R&D efforts

Embedded readout Compact sensitive layer ASIC's Data multiplexing Cooling Sensor technology

. . .

Summary

- Imaging calorimeter is a key ingredient of a detector system optimized for PFA
- A lot of R&D efforts world wide, a lot of progress made
 - Proof of principle is done for imaging calorimeter
 - Close to be able to build a real detector
- A lot of unique things about imaging calorimeter
 - Unprecedented detailed measurement of particle showers
 - Valuable data for MC simulation models
 - Validation for PFA
 - Self-calibration
 - Software compensation
 - Leakage correction
 - (and many more)
- A real breakthrough in calorimeter technology