XENON1T Demonstrator

Ranny Budnik
Columbia University

Our Universe

- *Most of the matter in our universe is made of Dark Matter
- *Dark Matter lies outside the scope of the Standard Model
- *Weakly Interacting Massive Particles (WIMPS) are predicted in most Beyond-Standard-Model (BSM) theories (SUSY, KK, ...)
- *Their interaction is so weak that out of 10¹⁵ that pass through your body per day, only <10 interact
- *How can we detect them in a lab?

Direct Detection of WIMPs

- *The DM halo density is around ρ ~0.3 GeVcm⁻³
- *WIMP flux on earth is about 10⁵ cm⁻²s⁻¹ (for 100 GeV WIMP). This flux is large enough to enable detection in the lab.
- *Direct detection by their elastic collision with nuclei in ultra-low background detectors
- *Spin Independent (SI) $\sigma \sim A^2$, SD~WIMP couples to nuclear spin J_N

Dark Matter Direct Detection

DarkSide

The XENON Detector Concept

→ lots of information for each event

The XENON Program

XENON1T

XENON10

PRL100 PRL101 PRD 80 NIM A 601

XENON100

2008-2011 taking science data first results: PRL105

1 ton fiducial 2.4 t total @180K 2011-2015

XENON R&D

ongoing

The XENON1T collaboration

XENON sensitivity goal

The future: XENON1T

- 2.4 tons of liquid Xenon with a 1 ton fiducial volume
- 5 meter radius water shield instrumented with PMTs
- Approved to be built in Hall B in LNGS

The future: XENON1T

Highlights of technologies and concepts for XENON1T

- XENON1T <u>Demonstrator</u> for long drift and HV tests (Columbia and Rice)
- <u>Cryogenics system with heat exchanger high flow rate purification</u> (Columbia)
- Measured QE at low temperature of 3" Hamamatsu R1140 and R8520 with LT Bialkali PC (Columbia & Munster)
- Measured response of 3" QUPIDs in LXe (UCLA)
- Measured radioactivity of all above PMTs for XENON (Zurich)
- Measured low activity SS and Ti for XENON1T cryostat (Zurich)
- Designed a new system for storage of 3 ton Xe in gas and liquid phase (Subatech)
- Designing new Kr distillation column (Munster)
- Developed Atom Trap (Columbia) and Mass Spectrometry system (MPKI) for < 1ppt measurement of Kr/Xe

Challenges for 1 Meter Drift LXe TPC

- Purification:
 - High speed recirculation (2.4t purification must not take months...) Cost: 11 Watt/slpm, ~80% for latent heat
 - Long electron lifetime
- High Voltage:
 - Notoriously problematic
 - Feedthrough (Vacuum, size, radiopurity)
 - Meshes
 - PMTs/QUPIDs

XENON1T Demonstrator

Cooling: XENON100 cooling system

- Separating the cooling / circulation from the TPC, for the sake of low background

Cooling and heat exchange

Xe volume separated from the cooler

Heat exchanger

TPC ↓ pump

Heater

Connection between cold finger and cooler

What is wrong here?

Gas system

1/2" pipes for low resistance to flow

Large capacity pump by KNF – capable of flowing 200 slpm

Large capacity SAES getter – nominally capable of 75 slpm

Buffer volume

Heat exchanger

Buffer Volume

Getter

Pump

Fast recirculation

Pressure drop on the getter

Violent pressure fluctuations, buffer volume required

Pressure drop on the Heat Exchanger

Heat exchange efficiency

On a smaller system (28W cooler), up to 13 slpm Lxe – 96%!

With the same Heat exchanger, limited to 40 slpm – down to 85%

JINST 6 P03002 (2011)

Larger HE

High capacity (almost 4 litres) heat exchanger

Mounted correctly, ¼" pipes on the liquid side

Efficiency > 90% up to 70 slpm

Able to circulate ~90 slpm

higher flow expected after more tuning

Physics principle – liquid heat exchange

Movie

High voltage FT

Special Feed Through, based on design used for Xe100:

- 3/8" tube, fits on a mini CF or CF40
- Low radioactivity
- Leak tight at operation conditions
- Tested with a grid in Lxe up to 60kV

Dedicated test setup at Columbia/Rice

TPC

TPC and vacuum jacket designed to have a net of 1m drift

Testing both 3" Hamamatsu PMT and QUPID

Being manufactured, will be ready in a few weeks.

Summary

- The first phase of the XENON1T Demonstrator has been completed
- High circulation rate up to 90 SLPM has been achieved.
 Higher rate expected in the future
- Low radioactivity HV feed-through tested with cathode mesh in LXe up to 60 KV
- Two-phase TPC with drift gap up to 1 meter is being manufactured
- Both 3" PMTs and QUPIDs will be tested in this TPC