2nd International conference on Technology & Instrumentation in Particle Physics

<u>Giuseppe Broccolo^(1,2)</u>, Jacopo Bernardini^(1,2), Roberto Dell'Orso⁽¹⁾, Francesco Fiori^(1,3), Alberto Messineo^(1,3), Fabrizio Palla⁽¹⁾, Piero Giorgio Verdini⁽¹⁾

SCUOLA

PISA

SUPERIORE

INFN⁽¹⁾, Scuola Normale Superiore⁽²⁾,

UNIVERSITÀ DI PISA

University⁽³⁾ of Pisa

on the behalf of the CMS collaboration at CERN

G. Broccolo, "Design & studies of μ -strip stacked module prototypes for tracking @ SLHC", TIPP2011 Chicago, 10/6/11

Method Validation

→ Performance of 2-in-1 modules measured in CMS data (7 TeV p-p collisions)

- >> Firstly MinBias/QCD events, π 's & μ 's (from B\D semileptonic decays) tracks inside hadronic jets
- >> good quality tracks selected: χ^2 <2, #_{hits}>11, #_{pixel}>1, z₀<10 cm, d₀<0.1 cm (π 's) \ 5 cm (μ 's)

G. Broccolo, "Design & studies of μ -strip stacked module prototypes for tracking @ SLHC", TIPP2011 Chicago, 10/6/11

7

TrPp 2011

X local

Pisa detector

Beam Test (Setup)

detectors.

Reference *★*Z global

→ Telescope Setup:

- >> Trigger made by coincidence of two scintillators mounted on both sides of the telescope
- >> 8 reference planes (Si μ -strip sensors 50 μ m pitch) rotated by ±45°, only 8<#hits<13 tracks retained
- >> reference detectors alignment & clusters\track reco in global reference provided by Helsinki HIP team (thanks to T. Mäenpää et al.)
- \rightarrow To identify fakes & calculate the incidence beam angle we have to align Pisa det. to global frame
 - >> Minimizing the residuals xloc-xglob rotating frames step-by-step

- → Particles 4-momentum propagation inside material based on GEANT4, Tk layout geometry & material budget description based on XML files architecture
 - >> MinBias: generated with the Pythia MC generator single µ[±]: generated with "single particle gun" MC generator
 >> Tk Geometry: 3 barrel layer (1.2 m long) outside Si Pxl Vtx, Si sensors Stacked modules 10 X 10 cm².
 Module Topology: µ-strip 98 µm pitch 4.6 cm long, 300 µ m thickness, AR=1 mm, active area 9.2 X 9.2 cm²
 >> Digital µ-strip read-out via ADC, channels of both sensors read-out independently (Module A emulation)

G. Broccolo, "Design & studies of μ -strip stacked module prototypes for tracking @ SLHC", TIPP2011 Chicago, 10/6/11

<image><section-header>

References

- → Publications:
 - >> "Concepts for a tracker trigger based on a multi-layer layout and on-detector data reduction using a cluster size approach", JINST 5:C08002, 2010
 - >> "Track momentum discrimination using cluster width in silicon strip sensors for SLHC" Published in *Prague 2007, Electronics for particle physics* 80
 - >> "Tracking in the trigger: From the CDF experience to CMS upgrade" Pos VERTEX2007:034, 2007
 - >> "Design and development of micro-strip stacked module prototypes for tracking at S-LHC", JINST 5:C11018, 2010
 - >> "Design and development of micro-strip stacked module prototypes to measure flying particle directions", JINST 5:C07014, 2010
- → Talks:
 - >> http://indico.cern.ch/contrbutionDisplay.py?sessionId=0&contribId=16&confId=68677
 - >> G. Parrini, Talk at Joint SLHC Trigger-Tracker meeting 2007, CERN and TWEPP 2007
 - >> http://indico.cern.ch/getFile.py/accesscontribId=80&sessionId=29&resId=0&materialId= paper&confId=11994

Work financed by MIUR PRIN2008 project

Back Up Slides

T₁**P**₂**0**₁

p₁ measurement

▶ The two approaches for a quick "measure" of pT

pt measurement

Simplified for mulas

Using acceptances W/R < 0.2 the stub width formula can be simplified

 $TW_r " F + (1+F^2) (x/R)$

$$F = \pm \frac{1}{\sqrt{\frac{pT_{\min}^{0}}{\frac{pT_{\min}^{0}}{\frac{p}{k}}}}}) \pm \frac{pT_{\min}^{0}}{\frac{pT_{\min}^{0}}{\frac{p}{k}}} = \frac{1}{2} \frac{pT_{\min}^{0}}{\frac{pT_{\min}^{0}}{\frac{p}{k}}} + \frac{1}{2} \frac{pT_{\min}^{0}}{\frac{p}{\mu}} + \frac{1}{2} \frac{pT_{\max}^{0}}{\frac{p}{\mu}} + \frac{1}{2} \frac{pT_{\max}^{$$

lf pT^{*} ≫ 1

$$TW = \frac{\#_{p}T_{\min}}{\binom{9}{p}T} (+ x/R = \pm 1/pT) + x/R$$

$$flat layer (pT* any)$$

$$flat layer (pT* =!)$$

Giuliano Parrini - Pisa meeting 4-5 / 05 / 09 7

Lorentz spread

After the digitization the inverse transformation gives not unique results:

if $TW_{measured} = N \times pitch$ we have N-2 %TW < N

This observation is the starting point to calculate the threshold of the selection

Giuliano Parrini - Pisa meeting 4-5/05/09 13 G. Broccolo, "Design & studies of µ-strip stacked module prototypes for tracking @ SLHC", TIPP2011 Chicago, 10/6/11

G. Broccolo, "Design & studies of μ -strip stacked module prototypes for tracking @ SLHC", TIPP2011 Chicago, 10/6/11

Comparison with CMS stereo module

