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LHC to High Luminosity LHC
(HL-LHC) ' LHC

o L=10%*cm™%s71.
» HL-LHC main objectives:

o L=5x103%cm2%s71.
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» One of two all-purpose
detectors at the LHC
experiment.
> Consists of 3 types of

25m
detector systems:

Inner Tracking Systems.

Calori metry. Tile calorimeters

Muon Syste m. ! | { g \ LAr hadronic end-cap and

N Cal o) ri met ry su bd |V| d ed J—— | Pixel detector forward calorimeters

. . . T Toroid magnets LAr electromagnetic calorimeters
| n tO 3 d Iffe re nt re g I 0 n S . Muon chambers Solenoid magnet | Transition radiation tracker
- Barrel region consisting of: Semiconductor fracker

Electromagnetic Barrel
Calorimeter.

Tile Calorimeter.
> 2 End-Cap regions
containing:
- Electromagnetic End-Cap
Calorimeter.

Hadronic End-Cap
Calorimeter.

Forward Calorimeter.
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ATLAS Forward Calorimeter (FCal)
and the HL-LHC

> Liqluid Argon (LAr) Sampling
Calorimeter.
> Consists of 3 modules. First uses

Copper absorber, others use
Tungsten.

- Electrodes consist of rod at high
voltage and a tube at ground with
Liquid Argon between them.

> PEEK fibre keeps gap stable.
> Covers small angles near beampipe.

»  Expect several problems in the
FCal at HL-LHC parameters:
1. Charge build-up in Liquid Argon
gap. Reduces charge collection.
2. HV drop on FCal HV distribution
resistors reduces voltage on gap
significantly.
3. Argon temperature may exceed

boiling point of Liquid Argon from
beam heating.
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Signhal Degradation in FCal

» Expect degradation of FCal
signal in innermost region.
- n < 4.5 for L =3e34 cm2s71.

» ATLAS is currently

addressing this problem: N
- Comparing dose simulation with

in-situ measurements.

- Comparing current
measurements with
expectations.

- Assessing impact on physics
measurements as a function of
degradation.

FCal Signal degradation
simulation at n = 4.7
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Solutions to FCal Problem

» Current FCal will be highly activated at time of
shutdowns. Very difficult to modify. Two options
considered if FCal replacement is required:

1. Replace FCal with super FCal (sFCal):
Smaller gaps - reduce ion build-up.
New HV protection resistors - prevent HV drop.
Install additional cooling - prevent local boiling.
2. Insert Warm Calorimeter (Mini-FCal) in front of FCal.

Measure energy.

Reduce flux of particles and energy deposited in rest of
FCal.

Prevents all 3 problems facing the FCal.
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FCal Replacement

» FCall gaps reduced from 250 uym to 100 um.

- Prototype LAr calorimeter with 100 um gaps shown to operate successfully in
High Lumi tests in Protvino.

» HV protection resistors located on signal summing boards.
- Complete replacement with lower resistance HV protection resistors required.

» Require new cooling loops.

» Installation possible on the order of 12 months.
- Requires partial opening of end-cap cryostats and replacement of whole FCal

assembly.
FCAL Support Tube
/ FCAL1
/ ECAL2 FCAL Cables
up to Signal
L/

P S Feed-Through
PLUG3 and HV Feed
Through
=3z :
Upper LN2 Cooling Loop /' . 2 gt

Lower LN2 Cooling Loop

New Summing Boards

FCAL Cold Bulkhead
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»

>

>

>

Mini-FCal

Baseline Mini-FCal design.
- 12 layers of copper plates.

> 11 diamond detector planes.
- 18.8 radiation lengths.

Diamonds mounted on substrate.

> Latest design calls for diamond
sensors on both sides of substrate.

- Optimizes coverage of single layer.
Volume prior to Mini-FCal lined
with neutron-
absorber/moderator.

> Investigating various materials.
Current material (borated-

polyethylene) tested to HL-LHC levels.

Relatively simple installation:

° Insert into cryostat warm tube.
Opening cryostat unnecessary.

- But ... Investigating whether warm

tube can support additional load. May

require replacement.

e miaie)
5
%

Warm Tube
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Effect of Mini-FCal on FCall

Simulation of Energy Deposited in FCal1l Module
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Diamond Detectors

» Particles create electron-hole pairs.

- Apply high voltage across detector to
gather charge.

- Amplify charge collected, read out signal.
Amplifier

Incoming Particle
| » Diamonds grown via chemical vapour
H_[>_ deposition.
4

Growth Face * ‘ Come in two types:
Electrode

; —ledtronhole > Single crystal (sCVD) diamond.
V- creation - Polycrystalline (pCVD) diamond.

?t - Non-uniform crystal growth
- . throughout diamond.

9-3 = Bias Voltage Nitrogen used to speed growth.
Electrode . - Electrical (EL) grade, least nitrogen,
Substrate - |

L — highest price.

;il - Optical (OP) grade, middle nitrogen,
middle price.

Polycrystalline (PC) grade, most
nitrogen, lowest price.

» Our tests involve OP and EL
grade diamonds.
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Diamond Detector Tests

TRIUMF Irradiation Test Data » Irradiation test of pCVD
diamond in TRIUMF BLT1A.
S00— - Located at UBC.
4501 > 500 MeV/c protons.
AR _ » Fluence increased throughout
= 150 Blue =0OP300 Tiw-Al - Signal decays quickly. Start slow
'.E = 7 Red =EL300 Au-Pt to accurately observe.
= 300 » Reached average fluence of
E 25&5— 2.25e17 p/cm-.
5 F . ith orevi » Peak fluence of 5e17 p/cm? at
T 2005 ﬁf:::it;:::::“'"“'““ centre of detectors.
5 = - All detectors functional at the end
m 1500 of test.
= 1000 N = 5% of Max ~ Signal reduced to ~ 5 %.
E = B » Further irradiation tests
¢ 0F e planned with protons and
B | I S N e s i ol neutrons.
= 0 50 100 150 200 Lot ofem Spatial tests planned for Sept.
> pCVD diamond response non-
uniform.

o Test results to be used in further
simulations of Mini-FCal
response.
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Ganging and Radiation Damage

» Each Mini-Fcal will consist
Simulation of ~ 8000 diamond wafers.

> Wish to use < 1000
electronic channels. Need to
gang wafers.

160 » Signal degrades with
fluence (refer to slide 11).
> Must apply correction to

signal.

» Ganging complicated by

100 varying fluence throughout

> Mini-FCal.

> Wish to gang similarly
irradiated wafers.

\ miniFCal fluence array

140

120

101> cm-2

4300 4350 4400 4450 4500 4550 ~ » Fluence changes rapidly
» Assumes: with R and Z. Constant in
- [ L£dt = 250 fb~1. ¢.
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» Gangl - 480 channels per Mini-
FCal.
R (eta) ganged by 2 for inner 4 rings,
and by 3 for outer 6 rings.

Phi ganged by 2 for inner 4 rings,
and by 4 for outer 6 rings.

Z ganged as {2,2,3,2,2}.
» Gang2 - 600 channels per Mini-
FCal.
R (eta) ganged by 2.

Phi ganged by 2 for inner 4 rings,
and by 4 for outer 6 rings.

Z ganged as {2,2,3,2,2}.
» Gang3 - 480 channels per Mini-
FCal.
R (eta) ganged by 2.

Phi ganged by 2 for inner 4 rings,
and by 4 for outer 6 rings.

Z ganged as {2,3,3,3}.

=
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M|n|—FCaI N0|se Simulations

Energy Resolution (statistics) vs Energy for electrons
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Summary

» There are 3 potential problems facing the FCal at the HL-LHC:
1. Charge build-up in Liquid Argon gap.
2. HV drop on FCal HV distribution resistors.
3. Argon boiling.
» Studies are ongoing to understand the extent of signal degradation in
the FCal at the HL-LHC and its effect on physics measurements.

» In case signal degradation proven to impact ATLAS physics program,
there are 2 solutions being studied:
1. sFCal
Replacement FCal with:
Smaller Liquid Argon gaps.
Lower resistance HV distribution resistors.
Additional cooling loops.
- Proven technology.
2.  Mini-FCal
- Designed to prevent loss of signal in the inner edge of the FCall at HL-LHC parameters.
Exploring diamond option.
Diamond sensors operational after fluence of 2.25e17 p/cm? at 5 % of initial signal.
Spatial tests planned to measure non-uniform response in pCVD diamond.

Further simulations will model Mini-FCal response in preparation for use in ATLAS, if
technology is proven.
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Detailed Upgrade Schedule
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Wafer Layout

» 10 rings of wafers.

» 1.5 mm gap between inner 4 and outer 6
rings

Wafers are 0.3 mm thick.

Wafers are notched at each corner.

Inner radius of 65.5 mm (n=4.88).

Outer radius of 172.0 mm (n=3.91).
Wafer area ranges from [99.6,100.6] mm?2.

v Vv Vv Vv Vv

11 layers.

8448 wafers per Mini-Fcal.
Substrate 1.5 mm thick.
Yellow = Wafer

White = Substrate

k.
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Damage Correctlon

[ 25 GeV electrons

» Note - Plots do not account for
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20E- (gang2)7 » Below -Ener gy resolution before
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