

Crystal Calorimeters in the Next Decade

Ren-Yuan Zhu California Institute of Technology June 9, 2011

Talk given at TIPP 2011, Chicago, Illinois, USA

Why Crystal Calorimeter in HEP?

- Photons and electrons are fundamental particles.
 Precision e/γ measurements enhance physics discovery potential.
- Performance of homogeneous crystal calorimeter in e/γ measurements is well understood:
 - The best possible energy resolution;
 - Good position resolution;
 - Good e/ γ identification and reconstruction efficiency.
- Crystals may also provide a foundation for a homogeneous hadron calorimeter with dual readout of Cherenkov and scintillation light to achieve good resolution for hadrons and jets.
- Crystals are also being considered to build sampling calorimeter for applications resolution is less crucial.

Crystals for HEP Calorimeters

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	LYSO(Ce)	PWO	PbF ₂
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^ь (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	?
Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	?
Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 4.1	21	85	0.3 0.1	?
d(LY)/dT ʰ (%/ ºC)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	?
Experiment	Crystal Ball	BaBar BELLE BES III	KTeV	(L*) (GEM) TAPS	L3 BELLE	KLOE-2 SuperB SLHC?	CMS ALICE PANDA	HHCAL?
a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.								

Crystals for Homeland Security

Crystal	Nal(TI)	CsI(TI)	Csl(Na)	LaCl ₃ (Ce)	Srl ₂ (Eu)	LaBr ₃ (Ce)
Density (g/cm³)	3.67	4.51	4.51	3.86	4.59	5.29
Melting Point (°C)	651	621	621	859	538	788
Radiation Length (cm)	2.59	1.86	1.86	2.81	1.95	1.88
Molière Radius (cm)	4.13	3.57	3.57	3.71	3.40	2.85
Interaction Length (cm)	42.9	39.3	39.3	37.6	37.0	30.4
Refractive Index ^a	1.85	1.79	1.95	1.9	?	1.9
Hygroscopicity	Yes	Slight	Slight	Yes	Yes	Yes
Luminescence ^b (nm) (at peak)	410	550	420	335	435	356
Decay Time ^b (ns)	245	1220	690	570 24	1100	20
Light Yield ^{b,c} (%)	100	165	88	13 42	221	130
d(LY)/dT ʰ (%/ ºC)	-0.2	0.4	0.4	0.1	?	0.2

a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.

(ICHNOLO

Crystal Density: Radiation Length

1.5 X₀ Cubic Samples: Hygroscopic: Sealed Non-hygro: Polished

Full Size Crystals:

BaBar CsI(TI): 16 X₀

L3 BGO: 22 X₀

CMS PWO(Y): 25 X₀

Excitation, Emission, Transmission

$$T_s = (1-R)^2 + R^2(1-R)^2 + \dots = (1-R)/(1+R)$$
, with

 $R = \frac{(n_{crystal} - n_{air})^2}{(n_{crystal} + n_{air})^2}$. Black Dots: Theoretical limit of transmittance: NIM A333 (1993) 422

No Self-absorption: BGO, PWO, BaF₂, Nal(Tl) and Csl(Tl)

Scintillation Light Decay Time

Recorded with an Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Light Output & Decay Kinetics

Measured with Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

Emission Weighted QE

Taking out QE, L.O. of LSO/LYSO is 4/200 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

L.O. Temperature Coefficient

Temperature Range: 15 - 25°C

Large temperature coefficient: CsI, BGO, BaF₂ and PWO

¹³⁷Cs FWHM Energy Resolution

3% to 80% measured with Hamamatsu R1306 PMT with bi-alkali cathode

2% resolution and proportionality are important for y-ray spectroscopy between 10 keV to 2 MeV

Low Energy Non Proportionality

D: deviation from linearity: 60 keV to 1.3 MeV Good Crystals: LaBr₃, BaF₂, CsI(Na) and BGO

Statistical & Intrinsic Resolutions

13

Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(Tl)	BGO	CsI(TI)	CsI(TI)	Csl	CsI(TI)	CsI(Tl)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS ^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	104	104	104	10 ⁴	10 ⁴	10 ⁵

Future crystal calorimeters in HEP: PWO for PANDA at GSI LYSO for Mu2e, Super B and HL-LHC, also a Shashlic PbF₂, PbFCl, BSO for Homogeneous HCAL

Crystal Calorimeter Resolution

6.6k CsI(TI)

2

10

CMS PWO Calorimeter

PANDA at GSI, Germany

LYSO ECAL for Mu2e

Four-vane calorimeter, comprised of 2400 LYSO crystals of 30 x 30 x 130 mm

June 9, 2011

LYSO Endcap for SuperB

The proposed SuperB ECAL endcap comprising 4400 LYSO crystals in projective geometry

The 1st 28 cm (25 X₀) long LYSO

A large size ingot of Φ60 x 310 mm was grown at SIPAT in 2009 and a 2.5 x 2.5 x 28 cm LYSO sample was obtained.

11 12 13 14 15

- Photo-luminescence, transmission, light output and light response uniformity (LRU) were evaluated.
- Radiation hardness against ¹³⁷Cs γ-rays up to 1 Mrad @ 7.5k rad/h were measured.
- Progress on optical transmittance for large size LYSO will be addressed

Energy Resolution for 0.511 MeV g-rays

Corresponding FWHM energy resolution at seven points along the crystal was measured by using an R1306 PMT to be 12.4% in average.

γ-Ray Induced Damage in LT & EWLT

¹³⁷Cs **γ**-rays up to 1 Mrad @ 7.5k rad/h: 9.6%

Damage in L.O. and Uniformity

¹³⁷Cs γ-rays up to 1 Mrad @ 7.5k rad/h: 12 ~14% Light response uniformity is maintained

LYSO is Radiation Hard against Charged Hadrons

G. Dissertori, D. Luckey, P. Lecomte, Francesca Nessi-Tedaldi, F. Pauss, IEEE NSS09, N32-3

The induced absorption of LYSO is 1/5 of PWO.

LSO/LYSO ECAL Performance

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to other crystals.
- A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 % /
$$\sqrt{E} \oplus 0.5$$
 % $\oplus .001/E$

SuperB LYSO Test Beam Result

Encouraging resolution measured at BTF, Frascati, with non uniformized LYSO crystals. Another test beam is planned at MAINZ after crystal uniformization

An LYSO Shashlic ECAL

R.-Y. Zhu, CMS Forward Calorimetry Meeting at CERN, 6/17/10

Homogeneous Hadron Calorimeter

A Fermilab team (A. Para et al.) proposed a total absorption homogeneous HCAL detector concept to achieve good jet mass resolution by measuring both Cherenkov and Scintillation light. It also eliminates the dead materials between classical ECAL and HCAL. This longitudinal segmented crystal HCAL is possible because of the latest development in large area compact readout devices.

Requirements for the materials to be used for HHCAL:
➢ Short nuclear interaction length: ~ 20 cm.
➢ Good UV transmittance: UV cut-off < 350 nm.

- Some scintillation light, not necessary bright and fast.
- \succ Cost-effective material: < \$2/cc for 100 m³ !
- Radiation hardness is not crucial at the ILC/CLIC.

A series of workshops on material development for HHCAL: 1st 2/19/2008 at SIC, Shanghai, 2nd 5/9/2010 at IHEP, Beijing, 3rd 10/30/2010 at Knoxville, will go with SCINT, CALOR & IEEE NSS.

HHCAL Design

A. Para, ILCWS08, Chicago: GEANT simulation shows jet energy resolution of about 22%/√E after corrections. This is much better than what has been achieved with PFA.

TiPp 2011

Candidate Crystals for HHCAL

Parameters	Bi ₄ Ge ₃ O ₁₂ (BGO)	PbWO ₄ (PWO)	PbF ₂	PbClF	Bi ₄ Si ₃ O ₁₂ (BSO)
ρ (g/cm³)	7.13	8.29	7.77	7.11	6.8?
λ _ι (cm)	22.8	20.7	21.0	24.3	23.1
n @ λ _{max}	2.15	2.20	1.82	2.15	2.06
τ _{decay} (ns)	300	30/10	?	30	100
λ _{max} (nm)	480	425/420	?	420	470
Cut-off λ (nm)	310	350	250	280	300
Light Output (%)	100	1.4/0.37	?	17	20
Melting point (°C)	1050	1123	842	608	1030
Raw Material Cost (%)	100	49	29	29	47

Crystal for Homogeneous HCAL

Crystals of high density, good UV transmittance and some scintillation light, not necessary bright and fast, are required. The volume needed is 70 to 100 m³: cost-effective material. Following 2/19/08 workshop at SICCAS, 5 x 5 x 5 cm samples evaluated.

Cherenkov Needs UV Transparency

Cherenkov figure of merit

Using UG11 optical filter Cherenkov light can be effectively selected with negligible contamination from scintillation

Scintillation Selected with Filters

TPP 2011

UG11/GG400 optical filter effectively selects Cherenkov/scintillation light

Cosmic Setup with Dual Readout

TiPp 2011 No Discrimination in Front Edge

Consistent timing and rise time for all Cherenkov and scintillation light pulses observed.

-6

-5

Pulse Height (V)

-3

PbF₂

5.2 ± 0.2 ns

 7.0 ± 0.2 ns

-2.5

Talk given in TIPP 2011, Chicago, by Ren-yuan Zhu, Caltech

Ratio of Cherenkov/Scintillation

1.6% for BGO and 22% for PWO with UG11/GG400 filter and R2059 PMT, which is configuration dependent.

Talk given in TIPP 2011, Chicago, by Ren-yuan Zhu, Caltech

PbF₂ Crystal Samples

A total of 116 samples with various rare earth doping were grown by vertical Bridgman method at SIC and Scintibow.

 \succ SIC samples: grown in **platinum** crucible, 1.5 X₀ (14 mm) cube.

> Scintibow samples: grown in graphite crucible, Φ 22 x 15 mm.

Luminescence Observed in PbF₂

Consistent Photo- and X-luminescence observed in doped PbF₂ samples grown by Prof. Dingzhong Shen of SIC/Scintibow.

Talk given in TIPP 2011, Chicago, by Ren-yuan Zhu, Caltech

Rare Earth Doped PbF₂

Multi-ms decay time observed, indicating f-f transitions of these rare earth elements which is too slow to be useful.

Anode Current

Anode current measured for doped PbF2 samples is at the same level as undoped crystals, indicating weak light.

BSO Crystals

Hu Yuan of SIC: Talk at the 2nd Workshop for HHCAL

June 9, 2011

Talk given in TIPP 2011, Chicago, by Ren-yuan Zhu, Caltech

¹³⁷Cs Spectrum & Decay Kinetics

A $\Phi 22 \times 105 \text{ mm}$ BSO shows good UV absorption edge and about 12% light output of a BGO cube with decay time 100 ns.

Talk given in TIPP 2011, Chicago, by Ren-yuan Zhu, Caltech

PbCIF Crystals

Guohao Ren of SIC: Talk at the 2nd Workshop for HHCAL

D= 7.11g/cm³

Melting point =608°C Space group=P/4nmm

a=4.10Å;c= 7.22Å

Figure 2.1 Phase relations in PbCl2-PbF2 system

PbClF Crystal samples grown at SICCAS

PbFCl Samples

ID	PbFCl-1	L PbFCl	PbFCl-2		PbFCl-3		PbFCl-4		PbFCl-5	
Doping		Na 0.5a	at%							
Dimension (mm)	10x10x2	2 10x10	10x10x2		30x10x5		20x10x3		~10x10x9	
ID	PWO	PbFCl-1	PbFCl-1 Pt		PbFCl-3		PbFCI-4		PbFCl-5	
X-luminescence		Peaked @ 420 nm								
L.O. (% PWO)	100	14		64	33		35		31	
L.O. (% BGO)	1.8	0.25		1.1	0.59		0.63		0.56	

Talk given in TIPP 2011, Chicago, by Ren-yuan Zhu, Caltech

TiPp 2011

X-Luminescence & Transmittance

TiPp 2011

June 9. 2011

2.4 10⁵ 2 10⁵ 1.6 10⁵

8 10

4 10

200

Talk given in TIPP 2011, Chicago, by Ren-yuan Zhu, Caltech

600 700

Wavelength / nm

Scintillating Ceramics at SICCAS

Decay YAG: 0.5at%Ce -A box4-23 (Cina)

[ex=340nm/16,em=550nm/16], D0.208ns/ch,1744

160

80

80

60

40

20

200

300

400 500

Transmittance / %

240

320

time [ns]

400

1898exp(-t/63.8ns) -475exp(-t/27.5ns)+ 0.1

vagce 36d

480

0.3at% Ce:YAG

Ceramics

800 900

2 exp fit pulse vance 39

Highly transparent RAG-based ceramics were prepared and their properties

The scintillation properties of these ceramics may be optimized to fit the concept of the HHCAL detector.

scintillation characterized.

ceramics

XEL Spectra, Decay curve and Transmittance of YAG based

600

47

1000

100

10

units]

ntensity [arb.

Radioluminescence spectra of YAG:Ce 0.3at%; 0.5at

BG32a (bg32_80s) BGO single crystal d=2mm (bgo_30s) YAG:0.5at% Ce-NA box3-10 f_1730(450nm) (yagce_31s

YAG 0 5at% Ce-A box4-23 f 1730(440nm) (yagoe_

300

d:\Data\L7-2009Xem YAG Ce 7-abs.qpc

400

Wavelength [nm]

500

YAG:0.3at% Ce-NA box1-9 f_1730(430nm) (yagce_33s)
 YAG:0.3at% Ce-A box2-22 f_1730(440nm) (yagce_34s)

Cina (RT, X-ray: 40 kV, 15 mA, slit 6)

transparent BSO-based Highly glasses were prepared and their properties characterized.

The scintillation properties of

TiPp 2011

0 300 400 500 500 600 700 800 900 1000 wavelength / nm wavelength / nm

XEL Spectra and Transmittance of BSO bulk glasses

Summary

- Homogeneous crystal ECAL provides good resolutions for e/y measurements. An LSO/LYSO ECAL may provide excellent energy resolution over a large dynamic range down to MeV level.
- Homogeneous hadronic calorimeter (HHCAL) would provide good resolution for hadron and jet measurements. Because of the huge volume needed development of cost-effective UV transparent material is crucial. Our initial investigation indicates that scintillating PbF₂ PbClF and BSO are the best crystal candidates. Scintillating glasses and ceramics are also being considered.
- LSO/LYSO plates have also be proposed for a Shashlic type sampling calorimeter for HL-LHC. Scintillating glasses and ceramics may also fit in this application if radiation hard.

2nd Workshop for the HHCAL

May 9, 2010, Beijing: http://indico.ihep.ac.cn/conferenceTimeTable.py?confld=1470

1) HHCAL and General Requirement:

Gene Fisk, FNAL: "<u>Fermilab's History in the Development of Crystals, Glasses and Si Detector Readout for</u> <u>Calorimetry</u>"

Adam Para, FNAL: "<u>Scintillating Materials for Homogeneous Hadron Calorimetry</u>" Steve Derenzo, LBL: "<u>Search for Scintillating Glasses and Crystals for Hadron Calorimetry</u>" Paul Lecoq, CERN: "<u>A CERN Contribution to the Dual Readout Calorimeter Concept</u>"

2) Materials for HHCAL (I) :

Alex Gektin, SCI: "<u>Crystal Development for HHCAL: Physics and Technological Limits</u>" Liyuan Zhang, Caltech: "<u>Search for Scintillation in Doped Lead Fluoride for the HHCAL Detector Concept</u>" Guohao Ren, SIC: "<u>Development of Halide Scintillation Crystals for the HHCAL Detector Concept</u>" Hui Yuan, SIC: "<u>BSO Crystals Development with the Modified Multi-crucible Bridgman Method for the</u> <u>HHCAL Detector Concept</u>"

3) Materials for the HHCAL (II) followed by discussions

Mingrong Zhang, BGRI: "<u>R&D on Scintillation Crystals and Special Glasses at BGRI</u>" Tiachi Zhao, U Washington/IHEP and Ningbo University: "<u>Study of Dense Scintillating Glass Samples</u>" Jing Tai Zhao, SIC: "<u>Status of Scintillating Ceramics and Glasses at SIC and Their Potential Applications for</u> <u>the HHCAL Detector Concept</u>"

Richard, Wigmans, Texas Tech University: "Some thoughts about homogeneous dual-readout calorimeters"

3rd Workshop for the HHCAL

October 31, 2010, Knoxville: http://www.nss-mic.org/2010/program/ListProgram.asp?session=HC1,2,3,4

- 1. A. Para, Prospects for High Resolution Hadron Calorimetry
- 2. G. Mavromanolakis , Studies on Dual Readout Calorimetry with Meta-Crystals
- 3. D. Groom, <u>Degradation of resolution in a homogeneous dual readout hadronic</u> <u>calorimeter</u>
- 4. S. Derenzo, <u>High-Throughput Synthesis and Measurement of Candidate Detector</u> <u>Materials for Homogeneous Hadronic Calorimeters</u>
- 5. M. Poulain, <u>Fluoride Glasses: State of Art and Prospects</u>
- 6. I. Dafinei, <u>High Density Fluoride Glasses</u>, <u>Possible Candidates for Homogeneous</u> <u>Hadron Calorimetry</u>
- 7. P. Hobson, <u>Prospects for Dense Glass Scintillators for Homogeneous Calorimeters</u>
- 8. G. Dosovitski, <u>Potential of Crystalline, Glass and Ceramic Scintillation Materials for</u> <u>Future Hadron Calorimetry</u>
- 9. Tianchi Zhao, Study on Dense Scintillating Glasses

10. Jin-tai Zhao, <u>BSO-Based Crystal and Glass Scintillators for Homogeneous Hadronic</u> <u>Calorimeter</u>

- 11. Guohao Ren, <u>Development of RE-Doped Cubic PbF2 and PbClF Crystals for HHCAL</u>
- 12, N. Cherepy, Transparent Ceramic Scintillators for Hadron Calorimetry
- 13. J. Dong, Experimental Study of Large Area GEM

14. H. Frisch, <u>The Development of Large-Area Flat-Panel Photodetectors with Correlated</u> <u>Space and Time Resolution</u>