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Introduction 

  Research project interested in basic R&D for new trigger 
techniques 

  Use resources available at CDF trigger test stand 
  Hardware 
  Testing software 
  People 

  Outline 
  Why we’re interested in GPUs 
  Our experimental setup 
  Current measurements 
  Looking ahead… 
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Motivation 

  Power of GPUs has increased 
rapidly due to demands of 
3D graphics 
  Highly parallelized architecture 
  High memory bandwidth 

  Many applications of GPUs 
outside of imaging 
  Commercially available  

cheaper than dedicated 
hardware 

  Application programming 
interfaces like nVidia’s CUDA 
C ease development of 
software for new applications 
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  Are GPUs suitable for low-latency environments, like 
a HEP trigger? 

Photograph of GTX 285 GPU, courtesy of nVidia. 



GPU vs CPU Computation 

CPU (Intel Core i7-930) GPU (nVidia GeForce GTX 285) 
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  Limited number of 
simultaneous calculations 
possible 
  1 microprocessor 
  4 cores 
  8 threads 

  Large cache size 
  8 MB 

  Designed for running 
many instances of same 
routine simultaneously 
  30 microprocessors 
  240 cores 
  1024 x 30 threads (max) 

  Small cache size 
  8 kB / microprocessor 



CPU (Intel Core i7-930) 

GPU vs CPU Computation 
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From nVidia CUDA C Programming Guide (v 3.2) 

GPU (nVidia GeForce GTX 285) 



GPU vs CPU Computation 

CPU (Intel Core i7-930) GPU (nVidia GeForce GTX 285) 
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  Limited number of 
simultaneous calculations 
possible 
  1 microprocessor 
  4 cores 
  8 threads 

  Large cache size 
  8 MB 

  Sits directly on motherboard 
  Latency scale set by number/

speed of operations 

  Designed for running many 
instances of same routine 
simultaneously 
  30 microprocessors 
  240 cores 
  1024 x 30 threads (max) 

  Small cache size 
  8 kB / microprocessor 

  Communicates with CPU 
through PCIe bus 
  Latency scale set by host 

(CPU) ↔ device (GPU) 
communication 



GPU Memory Structure 
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  Various memory locations 
for storing/accessing data 
  Global Memory 

  Most available space 
  Read/Write 
  Slow access 

  Constant/Texture Memory 
  Smaller storage space 
  Read Only 
  Cacheable on multiprocessors 

(faster access) 
  Registers/Shared Memory 

  Limited storage space 
  Read/Write 
  Fast access for individual 

threads for thread blocks 

From nVidia CUDA C Best Practices Guide (v 4.0) 



Experimental Setup: Data Flow 
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Steps in PC 
• Receive input data 
• Copy input to GPU 
•  Perform calculations 

• Copy results from GPU 
•  Send output 

Goal: Measure total time for performing an HEP trigger 
algorithm from input going into the PC (t1) and the output 
leaving the PC (t2) and determine latency (t2 – t1) 

1 

2 



Input/Output: PULSARS 

  PULSAR (PULSer And 
Recorder) boards used 
in CDF Level 2 trigger 
system 
  Highly configurable 

  Transmit/receive CERN S-
LINK 

  Perform studies at CDF 
L2 Test Stand 
  Measure arrival time of 

data packets very well 
  PC running in real-time 

trigger environment 
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Connects to 
VME 
backplane 

Receives S-
LINK packets 



Input/Output: S-LINK PCI Cards 

  S-LINK data received/sent on special PCI cards 
  FILAR (Four Input Links for Atlas Readout) 
  SOLAR (Single Output …) 

  FILAR/SOLAR cards used in current CDF L2 system 
  Inherit drivers/operation code from L2 upgrade effort 
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From http://hsi.web.cern.ch/HSI/s-link/devices 

FILAR (above) and SOLAR (left, without 
S-LINK mezzanine attached). 



Experimental Setup: Data Flow 
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Steps in PC 
• Receive input data 

• Copy input to GPU 
•  Perform calculations 
• Copy results from GPU 
•  Send output 
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PC↔PULSAR Communication 

  PULSAR sends hit combinations 
to PC 
  Default: 500 S-LINK words  

20.5 μs latency 
  PC sends back some of results 

to PULSAR 
  Default: 100 S-LINK words  

  doesn’t contribute much to 
latency 
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Steps in PC 

•  Receive packets on FILAR 

•  Copy input to GPU 

•  Perform calculations 
•  Copy results from GPU 

•  Send output to PULSAR 
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The Computation: Linearized Track Fitting 
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  Want to run algorithm that would be used in HEP trigger 
  CDF Silicon Vertex Trigger (SVT) finds displaced vertices at L2 

  Pattern Recognition to form hit combinations (roads) 

Event Hits 
Compare to Pattern Bank 

  Perform track-fitting inside roads using simple scalar product 

track parameters (output)  track coordinates (input hit information) 

Known constants.  
Precalculated and  
stored in memory 



Calculations in CPU Only 
  Run track-fitting algorithm to 

“fit” fixed number of tracks 
  Fixed input and output word 

lengths 
  Fit 1 track (= 1 word) at a 

time 
  Small spread in CPU latency 

times 
  Mean latency increases linearly 

s)µLatency (

20 22 24 26 28

E
v
e
n

ts

0

100

200

300

400

Latency Measurements for Calculations in CPU

1 Word Analyzed

10 Words Analyzed

100 Words Analyzed

500 Words Analyzed

Number of Words Analyzed

0 100 200 300 400 500

s
)

µ
L

a
te

n
c
y
 (

21

21.5

22

22.5

CPU Latency as Function of Words Analyzed

I/O Time

Mean CPU Latency Times

06/11/2011 14 Ketchum et. al., TIPP 2011 

Summary of Data Flow 

•  Receive packets on FILAR 

•  Copy input to GPU 

•  Perform calculations (CPU) 

•  Copy results from GPU 

•  Send output to PULSAR 



CPU↔GPU (Host↔Device) Communication 

  Copy input words to GPU 
global memory 
  Default: 500 words  6 μs 

latency 
  Copy results from GPU back 

to CPU 
  Default: 2000 words (4 output 

words for each input word)  
19 μs 
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Summary of Data Flow 

•  Receive packets on FILAR 

•  Copy input to GPU 

•  Perform calculations 
•  Copy results from GPU 

•  Send output to PULSAR 
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Calculations in GPU 
  Run track-fitting algorithm: one 

track fit per thread 
  Amount of memory transfer 

between CPU and GPU held 
constant  

  As compared to CPU… 
  Latencies much longer in GPU 

(~60 μs total) 
  Spread of latencies much larger in 

GPU 
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Summary of Data Flow 

•  Receive packets on FILAR 

•  Copy input to GPU 

•  Perform calculations 

•  Copy results from GPU 

•  Send output to PULSAR 



Varying GPU Memory Lookup 
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GPU Latency for 100 Words Analyzed   Algorithm accesses pre-
defined constants for track 
fitting 

    

  Location in memory affects 
latency 

  Significant dependence of 
latency on handling of 
memory lookup 
  Differences ~ 10 μs between 

register and global memory 
  Good management  

optimized performance 

From nVidia CUDA C Best Practices Guide (v 4.0) 



Future Measurements 
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  Further testing of runtime properties of GPU 
  Optimal thread management in GPU 
  Strategies for addressing long latency of host ↔ device 

communication 
  Memory access strategies within GPU 
  ALL within context of real-time trigger system 

  Capable of testing more complex code: 
  Construct silicon hit combinations inside GPU 
  Perform calorimeter tower cluster for jet triggers 
  Directly compare performance of full trigger algorithms to 

current CDF L2 benchmarks 



Conclusions 
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  GPUs promising idea for future HEP trigger applications 
  Designed for running parallel algorithms with high memory 

bandwidth 
  Familiar software development 
  Commercial product in a consumer-driven market 

  Still, some limitations to be investigated and understood 
  Slow latency for host↔device communication 
  Sensitivity to memory access requires careful optimization 

  CDF L2 test stand hosts detailed performance studies in 
a real-time trigger environment 
  Established some base line performance marks 
  More detailed studies underway! 



Backup Slides 
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Typical Spread in GPU 
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  Mean of GPU latency measurements can vary from run to 
run 
  Means vary by ~ 0.3 μs 
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Outline of Results 

  IO Time for Receiving and Sending Signals 
  As function of Number of Input Words 
  As function of Number of Output Words 

  Latency for HostDevice and DeviceHost Copying 
  As function of Input/Output Words 

  Latency for CPU measurements 
  Varying number of calculations 

  Latency for GPU measurements 
  For constant number of calculations 
  Varying number of calculations 
  Varying type of memory access 
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Experimental Setup: Data Flow 

  Inputs loaded into S-LINK 
transmitter PULSAR 
  Use each S-LINK word to 

represent one “hit 
combination” set 

  Send patterns to PC and S-
LINK receiver directly 

  In the PC: 
  Receive packets on FILAR 
  Copy input to GPU 
  Perform calculations 
  Copy output from GPU 
  Send output to Pulsar on 

SOLAR 
  S-LINK Receiver PULSAR 

measures time of incoming 
packets for latency 
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