
06/11/2011 Ketchum et. al., TIPP 2011 1

Performance Study of a GPU in Real-
Time Applications for HEP Experiments

Wesley Ketchum1,
Silvia Amerio2, Denis Bastieri2,3, Matteo Bauce2,3, Pierluigi

Catastini4, Kristian Hahn4, Young-Kee Kim1,4, Tiehui Liu4,
Donatella Lucchesi2,3, and Giorgio Urso5

(1) University of Chicago, (2) INFN Padova,
(3) University of Padova, (4) FNAL, (5) ORMA Software

Introduction

  Research project interested in basic R&D for new trigger
techniques

  Use resources available at CDF trigger test stand
  Hardware
  Testing software
  People

  Outline
  Why we’re interested in GPUs
  Our experimental setup
  Current measurements
  Looking ahead…

06/11/2011 2 Ketchum et. al., TIPP 2011

Motivation

  Power of GPUs has increased
rapidly due to demands of
3D graphics
  Highly parallelized architecture
  High memory bandwidth

  Many applications of GPUs
outside of imaging
  Commercially available 

cheaper than dedicated
hardware

  Application programming
interfaces like nVidia’s CUDA
C ease development of
software for new applications

06/11/2011 3 Ketchum et. al., TIPP 2011

  Are GPUs suitable for low-latency environments, like
a HEP trigger?

Photograph of GTX 285 GPU, courtesy of nVidia.

GPU vs CPU Computation

CPU (Intel Core i7-930) GPU (nVidia GeForce GTX 285)

06/11/2011 Ketchum et. al., TIPP 2011 4

  Limited number of
simultaneous calculations
possible
  1 microprocessor
  4 cores
  8 threads

  Large cache size
  8 MB

  Designed for running
many instances of same
routine simultaneously
  30 microprocessors
  240 cores
  1024 x 30 threads (max)

  Small cache size
  8 kB / microprocessor

CPU (Intel Core i7-930)

GPU vs CPU Computation

06/11/2011 Ketchum et. al., TIPP 2011 5

From nVidia CUDA C Programming Guide (v 3.2)

GPU (nVidia GeForce GTX 285)

GPU vs CPU Computation

CPU (Intel Core i7-930) GPU (nVidia GeForce GTX 285)

06/11/2011 Ketchum et. al., TIPP 2011 6

  Limited number of
simultaneous calculations
possible
  1 microprocessor
  4 cores
  8 threads

  Large cache size
  8 MB

  Sits directly on motherboard
  Latency scale set by number/

speed of operations

  Designed for running many
instances of same routine
simultaneously
  30 microprocessors
  240 cores
  1024 x 30 threads (max)

  Small cache size
  8 kB / microprocessor

  Communicates with CPU
through PCIe bus
  Latency scale set by host

(CPU) ↔ device (GPU)
communication

GPU Memory Structure

06/11/2011 Ketchum et. al., TIPP 2011 7

  Various memory locations
for storing/accessing data
  Global Memory

  Most available space
  Read/Write
  Slow access

  Constant/Texture Memory
  Smaller storage space
  Read Only
  Cacheable on multiprocessors

(faster access)
  Registers/Shared Memory

  Limited storage space
  Read/Write
  Fast access for individual

threads for thread blocks

From nVidia CUDA C Best Practices Guide (v 4.0)

Experimental Setup: Data Flow

06/11/2011 8 Ketchum et. al., TIPP 2011

!"#$%&'()"*

+),)'-)"*

./0*

1)&2"3*

4/0*

!"#

Steps in PC
• Receive input data
• Copy input to GPU
•  Perform calculations

• Copy results from GPU
•  Send output

Goal: Measure total time for performing an HEP trigger
algorithm from input going into the PC (t1) and the output
leaving the PC (t2) and determine latency (t2 – t1)

1

2

Input/Output: PULSARS

  PULSAR (PULSer And
Recorder) boards used
in CDF Level 2 trigger
system
  Highly configurable

  Transmit/receive CERN S-
LINK

  Perform studies at CDF
L2 Test Stand
  Measure arrival time of

data packets very well
  PC running in real-time

trigger environment

06/11/2011 9 Ketchum et. al., TIPP 2011

Connects to
VME
backplane

Receives S-
LINK packets

Input/Output: S-LINK PCI Cards

  S-LINK data received/sent on special PCI cards
  FILAR (Four Input Links for Atlas Readout)
  SOLAR (Single Output …)

  FILAR/SOLAR cards used in current CDF L2 system
  Inherit drivers/operation code from L2 upgrade effort

06/11/2011 10 Ketchum et. al., TIPP 2011

From http://hsi.web.cern.ch/HSI/s-link/devices

FILAR (above) and SOLAR (left, without
S-LINK mezzanine attached).

Experimental Setup: Data Flow

06/11/2011 11 Ketchum et. al., TIPP 2011

Steps in PC
• Receive input data

• Copy input to GPU
•  Perform calculations
• Copy results from GPU
•  Send output

!"#$%&'

$(#)*+',-'

!"#$%&'''''

$(#)*+'&-'

.)#%&'

$/#%&'

0!"'

123456'

7!"'1

2

PC↔PULSAR Communication

  PULSAR sends hit combinations
to PC
  Default: 500 S-LINK words 

20.5 μs latency
  PC sends back some of results

to PULSAR
  Default: 100 S-LINK words

  doesn’t contribute much to
latency

06/11/2011 12 Ketchum et. al., TIPP 2011

Steps in PC

•  Receive packets on FILAR

•  Copy input to GPU

•  Perform calculations
•  Copy results from GPU

•  Send output to PULSAR

s)µLatency (
0 10 20 30 40 50

Ev
en

ts
 /

10
0

ns

0

100

200

300

400
1 Word Received
10 Words Received
100 Words Received
500 Words Received

Latency Measurements for PC Input

s)µLatency (
0 10 20 30 40 50

Ev
en

ts
 /

10
0

ns

0

100

200

300

400 1 Word Sent

10 Words Sent

100 Words Sent

Latency Measurements for PC Output

The Computation: Linearized Track Fitting

06/11/2011 Ketchum et. al., TIPP 2011 13

  Want to run algorithm that would be used in HEP trigger
  CDF Silicon Vertex Trigger (SVT) finds displaced vertices at L2

  Pattern Recognition to form hit combinations (roads)

Event Hits
Compare to Pattern Bank

  Perform track-fitting inside roads using simple scalar product

track parameters (output) track coordinates (input hit information)

Known constants.
Precalculated and
stored in memory

Calculations in CPU Only
  Run track-fitting algorithm to

“fit” fixed number of tracks
  Fixed input and output word

lengths
  Fit 1 track (= 1 word) at a

time
  Small spread in CPU latency

times
  Mean latency increases linearly

s)µLatency (

20 22 24 26 28

E
v
e
n

ts

0

100

200

300

400

Latency Measurements for Calculations in CPU

1 Word Analyzed

10 Words Analyzed

100 Words Analyzed

500 Words Analyzed

Number of Words Analyzed

0 100 200 300 400 500

s
)

µ
L

a
te

n
c
y
 (

21

21.5

22

22.5

CPU Latency as Function of Words Analyzed

I/O Time

Mean CPU Latency Times

06/11/2011 14 Ketchum et. al., TIPP 2011

Summary of Data Flow

•  Receive packets on FILAR

•  Copy input to GPU

•  Perform calculations (CPU)

•  Copy results from GPU

•  Send output to PULSAR

CPU↔GPU (Host↔Device) Communication

  Copy input words to GPU
global memory
  Default: 500 words  6 μs

latency
  Copy results from GPU back

to CPU
  Default: 2000 words (4 output

words for each input word) 
19 μs

06/11/2011 15 Ketchum et. al., TIPP 2011

Summary of Data Flow

•  Receive packets on FILAR

•  Copy input to GPU

•  Perform calculations
•  Copy results from GPU

•  Send output to PULSAR

s)µLatency (
20 30 40 50 60

s
µ

Ev
en

ts
 /

0.
5

0

50

100

150

200

1 Word Copied

10 Words Copied

100 Words Copied

500 Words Copied

Latency Measurements for Host to Device Copy

s)µLatency (
20 30 40 50 60

s
µ

Ev
en

ts
 /

0.
5

0

50

100

150

200

1 Word Copied
10 Words Copied
100 Words Copied
500 Words Copied
2000 Words Copied

Latency Measurements for Device to Host Copy

s)µLatency (

50 60 70 80

s
µ

E
v

e
n

ts
 /

 0
.5

0

20

40

60

80

100

120

Latency Measurements for Calculations in GPU

1 Word Analyzed

10 Words Analyzed

100 Words Analyzed

500 Words Analyzed

Number of Words Analyzed

0 100 200 300 400 500

s
)

µ
L

a
te

n
c

y
 (

20

40

60

80

100

Latency as Function of Words Analyzed

I/O Time

Mean CPU Latency Times

Mean GPU Latency Times

Calculations in GPU
  Run track-fitting algorithm: one

track fit per thread
  Amount of memory transfer

between CPU and GPU held
constant

  As compared to CPU…
  Latencies much longer in GPU

(~60 μs total)
  Spread of latencies much larger in

GPU

06/11/2011 16 Ketchum et. al., TIPP 2011

Summary of Data Flow

•  Receive packets on FILAR

•  Copy input to GPU

•  Perform calculations

•  Copy results from GPU

•  Send output to PULSAR

Varying GPU Memory Lookup

06/11/2011 17 Ketchum et. al., TIPP 2011

s)µLatency (

50 60 70 80 90

s
µ

E
v

e
n

ts
 /

 0
.5

0

20

40

60

80

100
Constant Memory Access

Global Memory Access

Register Memory Access

GPU Latency for 100 Words Analyzed   Algorithm accesses pre-
defined constants for track
fitting

 

  Location in memory affects
latency

  Significant dependence of
latency on handling of
memory lookup
  Differences ~ 10 μs between

register and global memory
  Good management 

optimized performance

From nVidia CUDA C Best Practices Guide (v 4.0)

Future Measurements

06/11/2011 Ketchum et. al., TIPP 2011 18

  Further testing of runtime properties of GPU
  Optimal thread management in GPU
  Strategies for addressing long latency of host ↔ device

communication
  Memory access strategies within GPU
  ALL within context of real-time trigger system

  Capable of testing more complex code:
  Construct silicon hit combinations inside GPU
  Perform calorimeter tower cluster for jet triggers
  Directly compare performance of full trigger algorithms to

current CDF L2 benchmarks

Conclusions

06/11/2011 Ketchum et. al., TIPP 2011 19

  GPUs promising idea for future HEP trigger applications
  Designed for running parallel algorithms with high memory

bandwidth
  Familiar software development
  Commercial product in a consumer-driven market

  Still, some limitations to be investigated and understood
  Slow latency for host↔device communication
  Sensitivity to memory access requires careful optimization

  CDF L2 test stand hosts detailed performance studies in
a real-time trigger environment
  Established some base line performance marks
  More detailed studies underway!

Backup Slides

06/11/2011 Ketchum et. al., TIPP 2011 20

Typical Spread in GPU

06/11/2011 Ketchum et. al., TIPP 2011 21

  Mean of GPU latency measurements can vary from run to
run
  Means vary by ~ 0.3 μs

s)µLatency (

50 60 70 80

s
µ

E
v

e
n

ts
 /

 0
.5

0

20

40

60

80

100

GPU Latency for 100 Words Analyzed

Run 1

Run 2

Run 3

Run 4

Run 5

Outline of Results

  IO Time for Receiving and Sending Signals
  As function of Number of Input Words
  As function of Number of Output Words

  Latency for HostDevice and DeviceHost Copying
  As function of Input/Output Words

  Latency for CPU measurements
  Varying number of calculations

  Latency for GPU measurements
  For constant number of calculations
  Varying number of calculations
  Varying type of memory access

06/11/2011 22 Ketchum et. al., TIPP 2011

Experimental Setup: Data Flow

  Inputs loaded into S-LINK
transmitter PULSAR
  Use each S-LINK word to

represent one “hit
combination” set

  Send patterns to PC and S-
LINK receiver directly

  In the PC:
  Receive packets on FILAR
  Copy input to GPU
  Perform calculations
  Copy output from GPU
  Send output to Pulsar on

SOLAR
  S-LINK Receiver PULSAR

measures time of incoming
packets for latency

06/11/2011 23 Ketchum et. al., TIPP 2011

!"#$%&'

$(#)*+',-'

!"#$%&'''''

$(#)*+'&-'

.)#%&'

$/#%&'

0!"'

123456'

7!"'

