R&D of scCVD Diamond Beam Loss Monitors for the LHC

• H. Jansen ¹, D. Dobos ¹, H. Pernegger ¹, N. Wermes ², V. Eremin ³

¹ CERN

² University of Bonn

³ Ioffe Physical-Technical Institute

Outline

- Idea and motivation for cryogenic diamond Beam Loss Monitors (BLMs) for the LHC
- Details of measuring set-up for diamond characterization via TCT
- The Plasma Effect for heavy ionizing particles in scCVD diamonds
- Raw measurements and derived charge-carrier properties for scCVD diamonds
- Conclusion

Idea and Motivation

- Place BLMs as close to the beam as possible
 - → Detector operation at 1.9 K, within the cold mass
- Choose detector material
 - → Candidates are: CVD diamond, silicon, liquid He
- Diamonds not tested yet at ultra-cold temperatures
 - → Interesting!
- Characterize scCVD diamonds at cryogenic temperatures with gaseous He cooling
 - → Start at RT, decrease stepwise down to 67 K with liquid He cooling
 - → Start at 1.9 K, increase slowly to 60 K

Idea and Motivation

- Place BLMs as close to the beam as possible
 - → Detector operation at 1.9 K, within the cold mass
- Choose detector material
 - → Candidates are: CVD diamond, silicon, liquid He
- Diamonds not tested yet at ultra-cold temperatures
 - → Interesting!

- Characterize scCVD diamonds at cryogenic temperatures with gaseous He cooling
 - → Start at RT, decrease stepwise down to 67 K with liquid He cooling
 - → Start at 1.9 K, increase slowly to 60 K

Idea and Motivation

- Place BLMs as close to the beam as possible
 - → Detector operation at 1.9 K, within the cold mass
- Choose detector material
 - → Candidates are: CVD diamond, silicon, liquid He
- Diamonds not tested yet at ultra-cold temperatures
 - → Interesting!

- Characterize scCVD diamonds at cryogenic temperatures with gaseous He cooling
 - → Start at RT, decrease stepwise down to 67 K with liquid He cooling
 - → Start at 1.9 K, increase slowly to 60 K

First test this week!

Why Diamond

Pros:

- High band gap (5.5 eV)
 - → Very high breakdown field > 1e7 V/cm
 - → Very high resistivity > 1e11 Ω cm
 - → Very low leakage current ≤ 1 pA
- Low dielectric constant (5.7)
 - → Low capacitance
 - → Low noise
- High displacement energy (43 eV/atom)
 - → Radiation hard

Cons:

- High pair creation energy (13.5 eV)
 - → Less signal (but less noise!)

Details of Measuring Set-up

- The Transient-Current Technique (TCT) measurement:
 - → measure the transient current
 - 1) α particles impinge on top side
 - 2) Create eh-pairs close to electrode
 - 3) Electric field separates charges
 - 4) Drifting charges induce current
 - \rightarrow Pos. (neg.) bias \rightarrow Measure e^{-} (h⁺)
 - → Use ultra-fast 2 GHz, 40 dB, 200 ps rise time current amplifier (cividec)
 - → Use broad-band 3 GHz scope (LeCroy)
 - → Use RF components

Details of Measuring Set-up

SETTINGS:

- → TCT in vacuum
- → Temp: 67 K 300 K, bias ≤ 600 V
- → Read-out from HV-side
- → Use collimator (avoid edge-effects)

TCT and the Plasma Effect

From Ramo-Theorem:

$$i(t) = \sum_{k} i_{k}(t)$$

$$= \sum_{k} e E_{w} v_{k}(t)$$

$$= \frac{e}{d} \sum_{k} v_{k}(t - t_{k}^{start});$$

$$v_{k}(t) = 0 \quad for \quad t < 0$$

FACTS:

- \rightarrow as produce high density charge cloud
- → Outer charges screen inner ones
 - → E-Field decreases inside the plasma
- → Increased E-Field decreases lifetime of plasma

Plasma Effect at 295 K

Difficulties

TCT Hole Pulses

TCT Hole Pulses

Trapping in Plasma

Below ~150 K:

- Field-free region within plasma cloud
 - → immediate trapping and increased recombination
- Detrapping if E_{tran} / kT large enough
- Distinguish 2 types of trapping!

$$oldsymbol{ au}_{ extit{trap}}^{ extit{plasma}} \ll oldsymbol{ au}_{ extit{trap}}^{ extit{drift}}$$

From Ramo-Theorem:

$$\begin{split} i_{(t)} &= i_{not-trapped}(t) + i_{released}(t) \\ &= \frac{e}{d} \sum_{i, not-trapped} v_i(t - t_i^{start}) \\ &+ \frac{e}{d} \sum_{i, released} v_i(t - t_i^{detrap}); \end{split}$$

$$\begin{aligned} Q_{\textit{released}}(t) &= \\ Q_{\textit{trapped}}(1 - \exp{(-t/\tau_{\textit{detrap}})}); \end{aligned}$$

Trapping/Detrapping at 110 K

Trapping/Detrapping at 80 K

Analysis of TCT Pulses

- Four phases:
 - 1) Start of drift
 - 2) Current saturation
 - 3) Collection at electrode
- 4) Tail FLAT TOP → const. E!

- Fit Erfc(t) to rising/falling edge:
 - → 50% levels mark start/end time
 - → Derive drift mobility and velocity
- Fit $1-\exp(-t/\tau_n)$ to saturation:
 - $\rightarrow \tau_n$ is plasma lifetime
- Fit $\exp(-t/\tau)$ to tail:
 - → Tail formed by cable effects,

amplifier bandwidth limits, diffusion

Hole Mobility and Velocity

Fits yield:

$$\mu_{0,h}^{295 \, K} = 2278 \pm 110 \, cm^2 / Vs$$
 $\mu_{0,h}^{67 \, K} = 7300 \pm 1850 \, cm^2 / Vs$ $v_{sat}^{295 \, K} = 11.8 \cdot 10^6 \pm 0.8 \cdot 10^6 \, cm / s$ $v_{sat}^{67 \, K} = 13.4 \cdot 10^6 \pm 1.4 \cdot 10^6 \, cm / s$

$$\mu_{0,h}^{67K} = 7300 \pm 1850 \, cm^2 / Vs$$

 $v_{sat}^{67K} = 13.4 \cdot 10^6 \pm 1.4 \cdot 10^6 \, cm / s$

- Mobility μ_h and avg. drift velocity $\langle v_{drift} \rangle$ at RT as expected
- μ_h increases down to 67 K (\rightarrow < v_{drift} > increases as well)
 - → no onset of impurity scattering
- v_{sat} ~ constant with temperature

Hole Mobility and Velocity

Fits yield:

$$\mu_{0,h}^{295 \, K} = 2278 \pm 110 \, cm^2 / Vs$$
 $\mu_{0,h}^{67 \, K} = 7300 \pm 1850 \, cm^2 / Vs$ $v_{sat}^{295 \, K} = 11.8 \cdot 10^6 \pm 0.8 \cdot 10^6 \, cm / s$ $v_{sat}^{67 \, K} = 13.4 \cdot 10^6 \pm 1.4 \cdot 10^6 \, cm / s$

$$\mu_{0,h}^{67K} = 7300 \pm 1850 \, cm^2 / Vs$$

 $v_{sat}^{67K} = 13.4 \cdot 10^6 \pm 1.4 \cdot 10^6 \, cm / s$

- Mobility μ_h and avg. drift velocity $\langle v_{drift} \rangle$ at RT as expected
- μ_h increases down to 67 K (\rightarrow < v_{drift} > increases as well)
 - → no onset of impurity scattering
- V_{sat} ~ constant with temperature

Integrated Charge

- Charge constant in range 140 K to 300 K
- Steep drop from 140K down to 67 K
 - → plasma associated trapping and recombination

Detrapping Time Constant

- Plot $ln(\tau_{dt})$ vs 1/T, do line fit:
 - $E_{\rm tran}^{\rm h} \approx 40 \, {\rm meV} \pm 10 \, {\rm meV}$
 - → lowest shallow trap
 - → investigate further energy levels of traps via Thermally Stimulated Current technique

Conclusion

- TCT offers eminent possibility to characterize detectors
- Temperature dependence of
 - drift mobility and velocity
 - total charge
 - trapping-detrapping mechanism
 - pulse shape in scCVD diamonds
- Plasma associated trapping reduces total charge yield at T < 150 K
 - \rightarrow Q_{signal} -> 0 for T -> 1.9 K ??

Cosmic Muons in scCVD

- Use charge-sensitive amplifier here
- No sign of charge degradation (20% with αs at 100K)
- Work in progress!

Outlook

- Paper in preparation
- Simulate pulse shapes including plasma effect and trapping-detrapping mechanism
- TCT with β-source (this summer)
 - → test MIP-like signal with diamond
 - → density of charge cloud much smaller
 - → no (little) plasma effect expected
- Beam tests at 1.9 K
- TCT with irradiated samples
 - → compare scCVD diamond with Si detectors
 - → expect better performance for scCVDs!

BACKUP SLIDES

Energy Loss in Diamond

Bragg curve simulator

http://www.nist.gov/pml/data/star/index.cfm

Pulse Shape for Constant Voltage

Two Contributions to Signal

from Ramo-Theorem:

$$\begin{split} i_{(t)} &= i_{non-trapped}(t) + i_{released}(t) \\ &= \frac{e}{d} \sum_{i, not-trapped} v_i(t - t_i^{start}) \\ &+ \frac{e}{d} \sum_{i, released} v_i(t - t_i^{detrap}); \end{split}$$

$$\begin{aligned} Q_{\textit{released}}(t) &= \\ Q_{\textit{trapped}}(1 - \exp\left(-t/\tau_{\textit{detrap}}\right)); \end{aligned}$$

non-trappped

released

Detrapping vs. T

Pulse shape at 67 K

Band width

