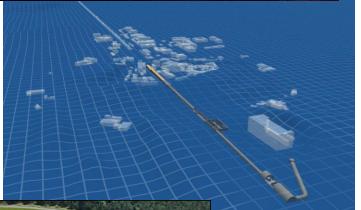
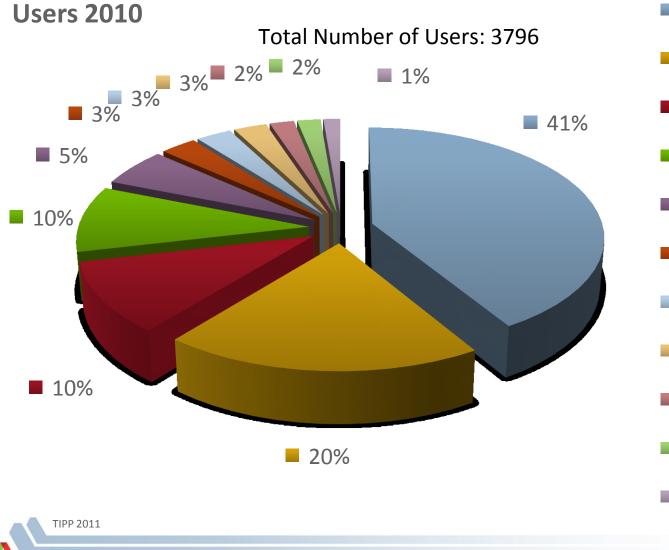


Synchrotron / X-ray Applications Detectors Make the Big Difference

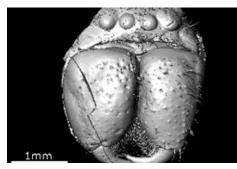
Klaus Attenkofer¹ And many users of APS, companies


¹Argonne National Laboratory X-ray Sciences Division / High Energy Physics Division

Overview


- The synchrotron community and experiments
- Lessons learned from the past
 - The detection requirements
 - Existing Detection Systems which changed the game
 - Lessons to be learned
- The next big challenges
- Conclusions

The Community The Advanced Photon Source as Example

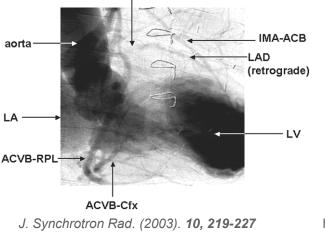

- Biological and life sciences
- Materials sciences
- Chemistry
- Physics
- Earth sciences
- Environmental sciences
- Technique development
- Engineering
- Medical applications

6/13/2011

- Polymers
- Others

The Community Same Examples

Palaeozoology


http://www.xradia.com/

www.nikonmetrology. com/ ct turbine blades

Clinical imaging

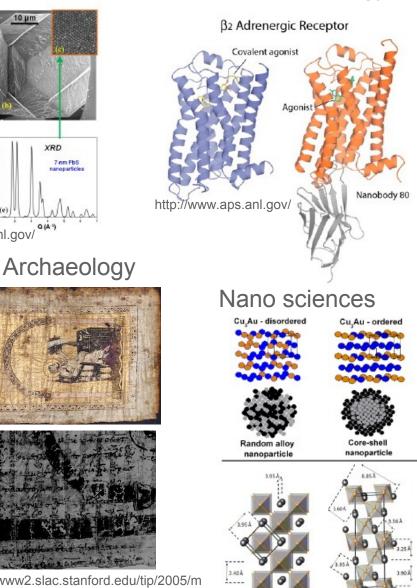
LAD occlusion

XRD

7-nm PbS nanoparticles

Geo sciences

SAXS

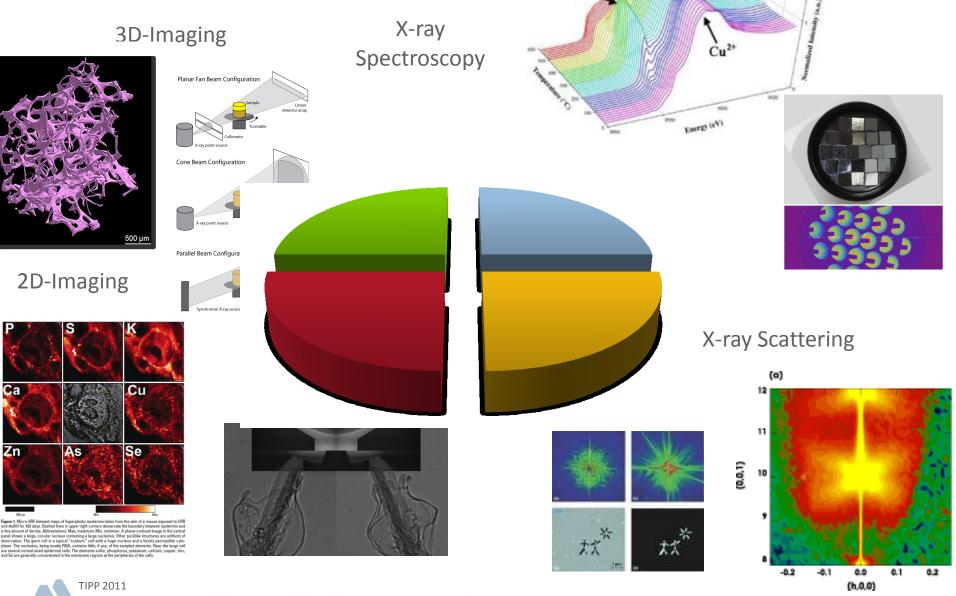

Single Supercrystal composed of 7-nm

PbS Nanoparticles

http://www.aps.anl.gov/

http://www2.slac.stanford.edu/tip/2005/m ay20/archimedes.htm

Structural biology



http://www.aps.anl.gov/

5.56Å

5.56Å

The Applied Techniques and Detection Requirements

Cu

Cu1+

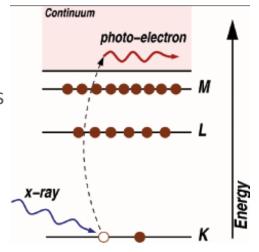
6/13/2011

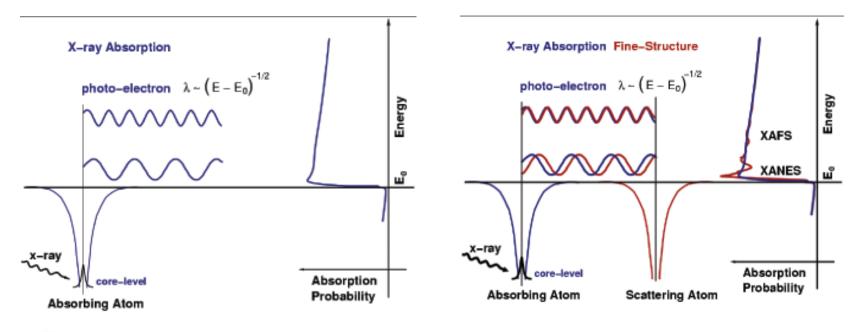
5

Typical Beam Conditions

- Primary beam
 - Flux: ~ 10¹⁰-10¹⁶ Photons/s
 - Beam size: ~ 1x1mm² - 30x30nm²; typical: 100x300µm² _
 - Photon energy: 1 eV -150keV —

~10keV

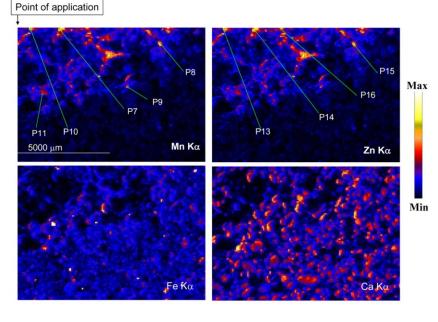

typical:


- 10⁻⁴ (monochromatic), 10⁻² (polychromatic) Bandwidth:
- Time-structure:
 - High energy synchrotrons (4-5 world-wide): typically 5-10MHz rep-rate with 100ps pulse width (about 10³-10⁹ photons/pulse) • "Modern" 2-3GeV rings (large number): typically 100MHz-500MHz with 100ps-50ps pulse width (about 10²-10⁸ photons/pulse)

Spectroscopy: XAFS What is X-ray Absorption?

- NEXAFS probes electronic states EXAFS next neighbors
- "Principle" difference: photo-electron in bonded (NEXAFS) are non-bonded (EXAFS) state

Initial absorption process


Spectroscopy The Task

Main detector properties:

- New Soller Slit: Diluted Samplesystem Al2O3/PtFe @ Fe K-edge Line of interest Vortex without filters Vortex with soller slit and Mn6-filter Vortex with soller slit and 2*Mn6-filter 4000 Many "bad" photons and only few "good" ones 2000 Signal to back-ground depends on the concentration and 1000 2000 4000 6000 8000 10000 12000 14000 16000 18000 Fluorescence emission is isotropic (emission in 4π) photon energy [eV]
- Total number of photons up to 10¹⁰ Photons/s
- Two detector solutions:

composition

- Single photon detection & electronic energy resolution (pulse height distribution)
- Current type detection system combined with energy filters:
 - Z-1-filters with soller slit system
 - Crystal optics (sometimes using spatially resolving detectors)

Spectroscopy Short History of XAFS Detectors

Physics

Catalysis **Material Sciences**

- Bio, Geo,
- Nuclear Engineering
- Chemistry

Development of combined techniques Microscopes

Real material under real conditions

- Lytle Detection system (mid 70's)
 - Enabler technology (allowed new filed: catalysis)
 - Cheap (a few \$K) and easy to install
 - Diluted samples with dominating elastic background (~1mmol-samples)
- Ge-multi-element detector (mid 90's)
 - Records full emission energy spectrum
 - Maximal count rate per element typically: ~ Single element _ 200Kcps. (about 10-30 elements)
 - Diluted samples down to (~1µmol-samples)
- Si-Drift diodes (starting ~2000)
 - Increased count rate and smaller fill-factor
 - Simple air cooling makes it easy to integrate
 - First "multi" element systems available
- Crystal optics (~ 2008-....)
 - Unprecedented energy resolution allows new spectroscopy techniques
 - Typically very complex instruments

Multi-element Ge-detector (LN2)

Ionization chamber sample point

with filter & slit system

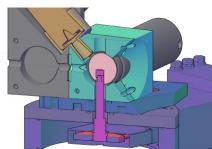
Silicon Drift Detector

surface of slit assemb

Gain control

Multi element Silicon Drift Detector


Modern Crystal Optics combined with area detectors

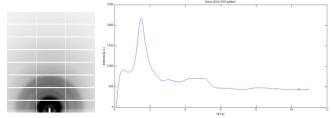


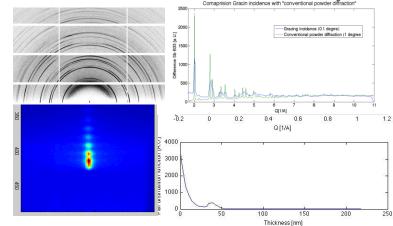
9

Spectroscopy The Big Detector Challenges

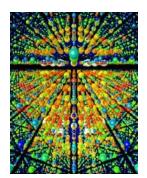
- Packaging
 - Large solid angle at least 1π perhaps $2-3\pi$
 - Small footprint
 - Modular system?
 - Modules must be compatible with harsh environment
 - Temperature
 - Pressure
 - Chemical environment (solvents, oxidizers, fuels....)
- Detection capabilities (of system)
 - 10⁹-10¹⁰ cps (at 100-5MHz rep rate)
 - Energy resolution 50-150eV at 10KeV
 - High detection efficiency between 3KeV-30KeV
 - Bunch to bunch resolution capability?
- Economics:
 - Typical cost for spectroscopy systems ~\$250K
 - Moderate number of systems: ~20-40 per year (dependent on prize)

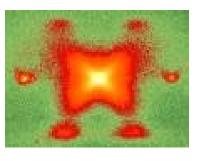
PPG


Integration and monolithic

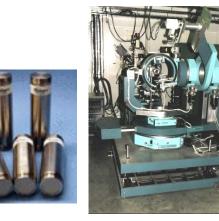

X-ray Scattering and Diffraction What is Scattering ?

PDF (pair distribution function)


- Small angle scattering probes:
 Shape and Size of particles
- Wide angle scattering:
 - PDF: amorphous and systems with low ordering
 - Powder diffraction: small crystallites (orientation, size, strain)
 - Single crystal diffraction:
 - Protein crystallography
 - Diffuse Scattering
 - Crystal truncation rod (CTR)
- Grazing incidence experiments:
 - Reflectivity
 - Small and wide angle techniques

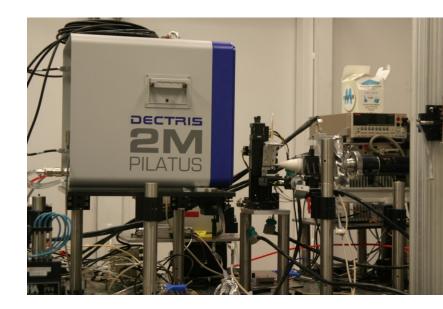


Powder Diffraction & Reflectivity

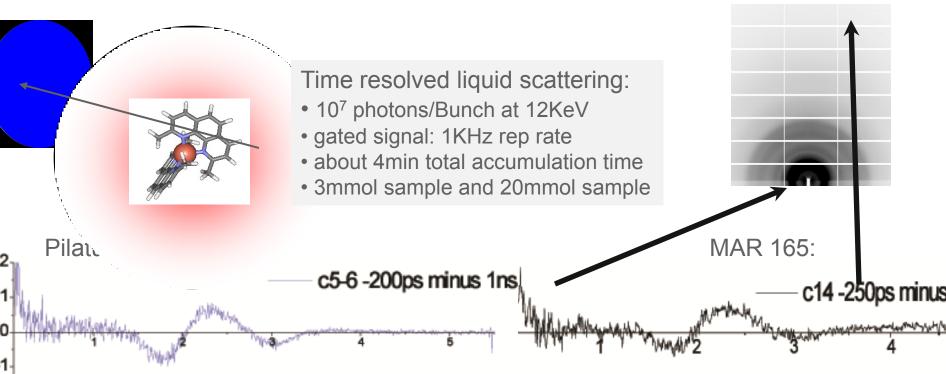

Single Crystal Techniques

X-ray Scattering and Diffraction **Short History of Scattering Detectors**

Re	quired Time*:	•	Point detector & complex goniometer (70's) – Technique development				
	1-2 weeks		 Fully detector limited: maximal count rate about 30Kcps 				
		- ∎ Im	 Low back-ground 				
			Image plate detectors (mid 90's)				
			- Integrating detector				
	8 hours		 Relative good signal-to-background 				
		-	 Much higher maximal count rate 				
			 2-D detection efficiency 				
		•	CCD with fiber or lens coupled phosphor (early 2000				
	1-30 minutes		 Much faster readout (~2s) 				
		S	 Better fill factor 				
			 Issues with low count rate applications 				
		•	D detectors (2008)				
	1 second		– Bunch-to-bunch gateable				
			 Excellent low count rate capability 				
*: full Q-information			 Relative low spatial resolution 				
TIPP 2011							

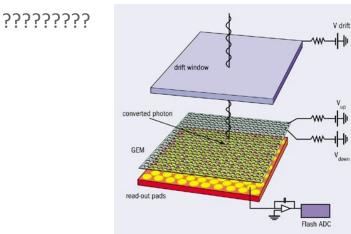


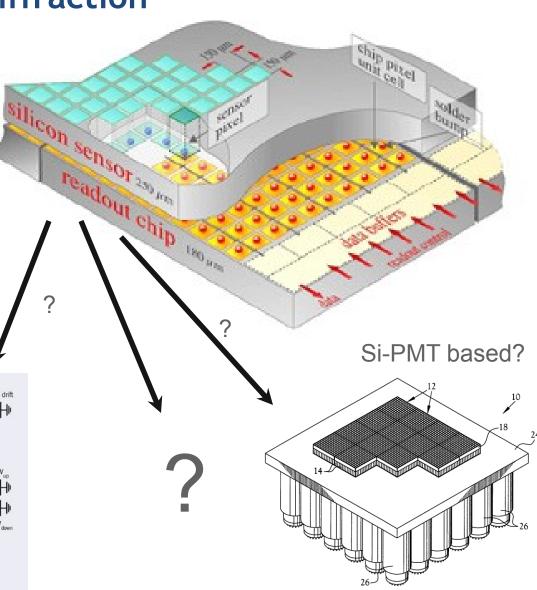
12


X-ray Scattering and Diffraction The Task

- Main detector properties:
 - Large detection area
 - Moderate energy resolution to suppress background (500eV @ 10KeV)
 - Good spatial resolution (10-50μm)
 - Large dynamic range (10⁻³counts -10¹⁰counts)
 - Count rates
 - Up to: 10^4 Photons/($100\mu m^2 x$ bunch) (5MHz rep rate)
 - Typical maximal count rate: 10⁻² Photons/(100μm² x bunch) (100MHz rep rate)
 - Energy range: 8-120KeV
- Two detector solutions:
 - Single photon detection & electronic energy resolution (pulse height distribution)
 - Integrating (bunch-bunch resolution)

X-ray Scattering and Diffraction Some Remarks to Single Photon Counting

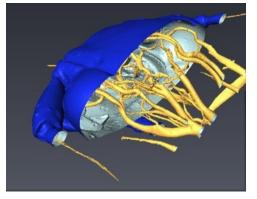

Raw data:



- Single photon counting: Significant better in low count rate application!
- Current pixel size is too large!
- Single photon counting allows energy discrimination -> background!

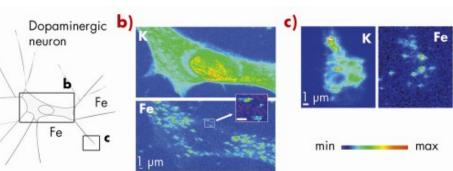
X-ray Scattering and Diffraction The Big Detector Challenges

- Main detector challenges:
 - Higher spatial resolution: ~5-10μm
 - Large areas
 - Price < \$1M ?</p>
 - Storage of Multiple frames?
 - Count rate up to: 10⁴ Photons/(100μm bunch)
 - Energy range: 5KeV-120KeV
- Detector solutions:



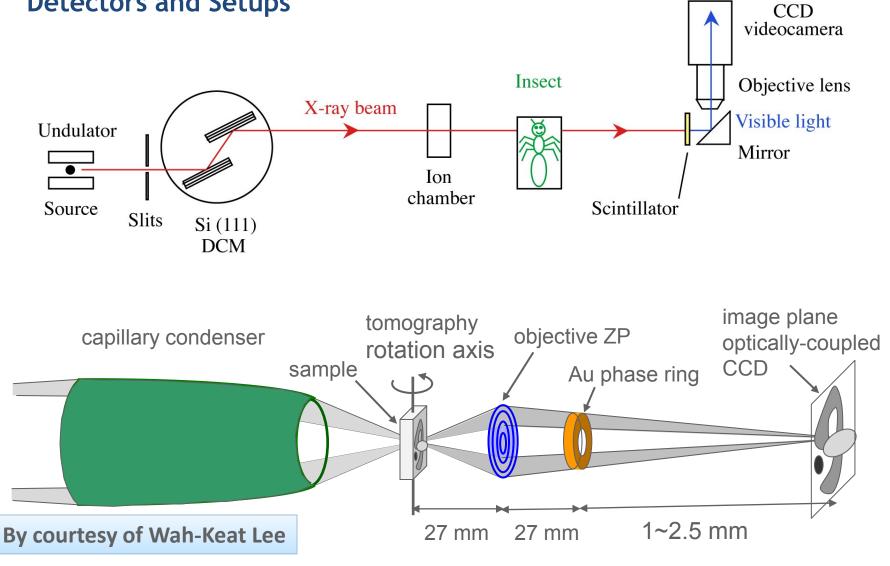
Imaging What is Imaging ?

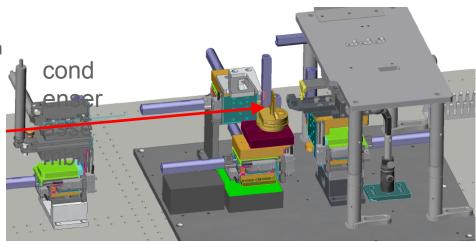
- Full field imaging
 - Phase contrast
 - Mainly for materials with low absorption contrast
 - Biological but also materials science problems
 - Time resolved
 - Slow resolution in milisecond range
 - High resolution down to ns-frame rate
- Scanning probe
 - Extreme high resolution (down to 10nm)
 - Elemental maps
- 3-D reconstruction (tomography)
 - Absorption
 - Phase-contrast
 - Diffraction contrast


By courtesy of Wah-Keat Lee

a)

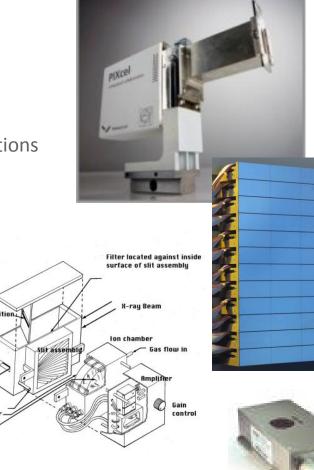
Fe


Fe



Imaging Detectors and Setups

Imaging The Task

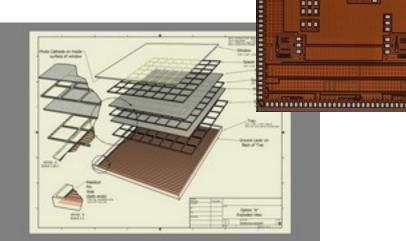

- Main detector properties:
 - Medium size detection area (1mm²-1cm²)
 - No energy resolution
 - Good spatial resolution (100nm-5µm)
 - Medium dynamic range (10⁻¹counts -10⁴counts)
 - Count rates
 - Up to: 10^4 Photons/($100\mu m^2 x$ bunch) (5MHz rep rate)
 - Typical maximal count rate: 10^{-2} Photons/($100\mu m^2 x$ bunch) (100MHz rep rate)
 - Energy range: 8-30KeV
 - In some cases Bunch-to-Bunch resolution
 - Fast read-out: 100Hz-10KHz
- Two detector solutions:
 - Scintillator-PAD detector
 - Direct illuminated fast CCD
 - MCP-units?

By courtesy of Wah-Keat Lee

Lessons learned from the past

- Every detector which had large impact
 - Relative easy to handle
 - Was developed over multiple product generations
 - Comes as a complete system (detector, electronics, software, and implementation in beamline architecture)
 - Availability due to industrial production
 - Addresses a general detector property applicable to many experiments
- Examples for collaborations between HEP and synchrotron community
 - Ge-detectors
 - All current PAD-detectors:
 Pilatus, Eiger, Medipix
 - Si-Drift detectors

Where We are Now? The Big Detector Challenges at Synchrotrons


Count-rate limitation (pixelated detector)	• Either by charge integrating systems or by smaller pixel size	
Limited spatial resolution (pixelated detector)	 50µm pixel size is next generation of pixelated x-ray detectors The challenge will be to create 1-10µm resolution (comparable to optical systems and following the trend for smaller beam sizes) 	
Fast readout to follow non reversible processes	 Mainly driven by insitu-community (like battery-community) Currently integrating memory on pixel Alternative bunch-to-bunch analysis and flexible "intelligence" 	
Large solid angle fluorescence/scattering detection system for insitu-work	 Currently only little effort is done Utilizing optimized sample-environment and detection systems are possible (currently used in timing community) 	

Where We are Now? State of the Art

Property	Charge Integrating Detectors	Single Photon Counting Detector	Fast Readout
Advantag e	Large Dynamic range for high count-rate application	Large dynamic range for low count rates (maximal ~600Kcps)	Following fast changes in the micro-milli-second
Disadvant age	"bad" signal-to- background ratio for low count rates	maximal count-rate per pixel ~600Kcps	Requires relative sophisticated electronics
Current activities	Cornell BNL/KETEK/Fermi German collaboration	Pilatus/Eiger (50x50mum ²) Collaboration MEDIPIX-collaboration	Eiger (10 KHz)
State-Of- The-Art	None existing device commercially available	172mumx172mum available	Next year commercially available (10KHz)
Next Big Challenge	? Demonstration of working system?	5-10mum pixel size	Bunch to bunch "read-out"

Where We are Now? HEP and Other Communities can Contribute!

- Advantages
 - Long tradition of building detectors
 - Strong electronics programs
 - ASIC and sensor chip development
 - Large innovative power
- Challenges
 - Very different culture
 - Dedicated instrumentation versus changing setups
 - Homogeneous versus very divers community
 - Different "language"
 - Single experiment versus large collaborations
 - Different funding channels and agencies
 - Different sciences
 - "coming in contact problem"

However: A very powerful combination (and it is already successfully done)

Conclusion

- Synchrotron community is highly divers (scientific background and experimental approaches)
- Most impact can be achieved by providing "better" detectors (Detector developments had been THE enabler in the past)
- Development of industrial partners is essential (availability)
- HEP-synchrotron connection was very fruitful

Let's start to work together!

