Application of Large Scale GEM for Digital Hadron Calorimetry

Jae Yu
For GEM DHCAL Group
June 11, 2011
TIPP 2011

• The Goals
• 30cmx30cm 2D readout with KPiX chip
• GEM-DCAL Integration
• Large Chamber Development
• GEM DHCAL Plans
• Summary
The Goals?

- Develop and construct precision calorimeter for future accelerators
- Demonstrate suitability of DGEM layer as active element of DHCAL
- Construction/testing of DGEM chamber/layers of various sizes – to 1m².
- Study of the response of double-GEM chambers to charged particles
- Use of analog (kPiX) and digital (DCAL) readouts with GEM.
- Debugging series of kPiX chips with SLAC.
- Measurement of DGEM chamber/layer characteristics
- Understanding of issues with chambers/layers (sparks, cross-talk,…)
- Develop large GEM foils with CERN MPGD Workshop.
- Develop design (frame/spacers/gas/HV…) for large chambers (~1m x 33cm).
- Establish operating conditions for large GEM/DHCAL chambers
GEM-based Digital Calorimeter Concept

Use Double GEM layers

~6.5mm
Simplified Timing:

There are ~ 3000 bunches separated by ~300 ns in a train, and trains are separated by ~200 ms.

Say a signal above event threshold happens at bunch n and time T0.

The Event discriminator triggers in ~100 ns and removes resets and strobes the Timing Latch (12 bit), range latch (1 bit) and Event Counter (5 bits).

The Range discriminator triggers in ~100 ns if the signal exceeds the Range Threshold.

When the glitch from the Range switch has had time to settle, Track connects the sample capacitor to the amplifier output. (~150 ns)

The Track signal opens the switch isolating the sample capacitor at T0 + 1 micro s. At this time, the amplitude of the signal at T0 is held on the Sample Capacitor.

Reset is asserted (synched to the bunch clock). Note that the high gain (default) capacitor is reset during an event, while the high gain (small) capacitor is reset each bunch crossing (except while processing an event).

The system is ready for another signal in ~1.2 microsec.

After the bunch train, the capacitor charge is measured by a Wilkinson converter.
GEM DHCAL with KPiX

Work with SLAC colleagues on KPiX7,9 debugging/operation
* Many thanks to M. Breidenbach, D. Freytag, R. Herbst
Gain vs HV

Typical operating point:
Gain \(~6000\)

June 11, 2011
DHCAL with Large GEM
Good conformation to characteristic Minimum Ionizing Landau fit
Three noisy channels removed
\(\sim 4.5\%\) kPiX duty factor
Testing/development with kPiX9

- kPiX9 – 512 channels – penultimate step to kPiXA (1024 ch.)
- 64 “bonded channels”
- Large effort between SLAC and UTA to:
 1) Use kPiX9 for GEM readout
 2) Understand KPiX9 characteristics
- GEM anode boards with kPiX9 loaded supplied by SLAC

Cosmic ray KPIX922, HV=1930V

Cosmic ray KPIX922, HV=1900V
GEM Integration with DCAL Chip

Goal: Enable readout of GEM/DHCAL planes via DCAL as the ultimate readout electronics of a 1m³ stack ➔ Chip has been battle tested!!

• Use DCAL in high-gain mode to establish MIP signals.
• Determine noise level for DCAL/GEM combination
• Determine operating threshold(s) for DCAL
• Investigate effects of sparks on DCAL chip.
• Determine efficiency/uniformity/multiplicity for GEM/DCAL
• Understand issues of using DCAL readout system with 1m² GEM/DHCAL planes in a test beam stack.

*Many thanks to ANL colleagues! J. Repondo, L. Xia, J. Darge, J. Schleroth, J. Smith (UTA student at ANL) and H. Weerts.

June 11, 2011
Radioactive Source Run with Internal Trigger

Noisy channels masked out!

Can you see what the object is?

June 11, 2011
Two DCAL Chambers show consistent behaviors.

June 11, 2011

DHCAL with Large GEM
Cosmic Rays with DCAL

10cmx10cm Cosmic Trigger
33cmx100cm GEM Foil Design

Designed to work with DCAL boards
Active area 940x306 mm2
Divided into 31 independent 9.9x950mm2 HV sectors
Base steel plate, t=2 mm

Readout Board
320x500 mm²

Readout boards are part of the gas volume!! How do we mate these together with minimal dead area?

2mm steel strong-back + thin cathode layer

3mm

1mm

1cm thick support from G10 spacers

We might be able to avoid this dead zone by gluing the two boards directly together!!

1mm pad board

2mm FE board

1mm assister strong back

June 11, 2011

DHCAL with Large GEM
Toward 100cmx100cm GEM Planes!!

CERN GDD Workshop delivered the first 5 of 33cmx100cm GEM foils in 2010 ➡ Qualification completed!!

<table>
<thead>
<tr>
<th>Foil Name</th>
<th>N_{strip-pass}</th>
<th>\langle t_{saturation} \rangle</th>
<th>N_{strip}>2000s</th>
<th>Qualification</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGEM 1</td>
<td>31</td>
<td>1725 s</td>
<td>4</td>
<td>Pass-med</td>
<td>Strips 1, 2, 10 & 23 >2000s</td>
</tr>
<tr>
<td>LGEM 2</td>
<td>30</td>
<td>1692 s</td>
<td>3</td>
<td>Pass-med</td>
<td>Strip 22 failed Strips 4, 5 & 29 >2000s</td>
</tr>
<tr>
<td>LGEM 3</td>
<td>31</td>
<td>1484 s</td>
<td>0</td>
<td>Pass-high</td>
<td>Strip 20 >2000 s</td>
</tr>
<tr>
<td>LGEM 4</td>
<td>31</td>
<td>1491 s</td>
<td>1</td>
<td>Pass-high</td>
<td>Free-Delivered broken</td>
</tr>
<tr>
<td>LGEM 5</td>
<td>Untested</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each of the GEM 100cmx100cm planes will consist of three 33cmx100cm unit chambers

June 11, 2011

GEM DHCAL, J. Yu
GEM DHCAL Plans

- **Phase I (Through late 2011)** ➔ Completion of 30cm x 30cm characterization and DCAL chip integration
 - Perform beam tests @ FTBF with 30cm x 30cm double GEM chambers, one with KPiX9 and 2 – 3 with DCAL ➔ August 2011
 - Completion of 33cmx100cm large foil evaluation
- **Phase II (late 2011 – early 2013)**: 33cm x 100cm unit chamber development and characterization
 - Begin construction of 2 unit 100cmx33cm chambers, one with kPiX and one with DCAL
 - Bench test with sources and cosmic rays and beam tests
 - Construction of 100cmx100cm plane
- **Phase III (Early 2013 – mid 2014)**: 100cmx100cm plane construction
 - Construct 6 unit chambers with DCAL for two 100cmx100cm planes
 - Characterize 100cmx100cm planes with cosmic rays and beams
- **Phase IV (Mid 2014 – late 2015)**: 100cm x 100cm plane GEM DHCAL performances in the CALICE stack
 - Complete construction of five 100cm x 100cm planes inserted into existing CALICE calorimeter stack and run with either Si/W or Sci/W ECALs, and RPC or other technology planes in the remaining HCAL
Summary

• 30cmx30cm GEM prototype chambers
 – kPiX readout: Established good 2D working condition with v7 now working on v9 (512 channel) integration
 – DCAL integration very successful ➔ Fine tuning and multiple chamber cosmic ray testing in progress
 – Getting ready for beam test at FTBF in August 2011

• 33cmx100cm unit chamber construction proceeding
 – First 5 foils of 33cmx100cm delivered and qualification completed
 – Spacers to be ordered
 – Preparing a mobile clean room for foil certification and chamber construction

• Mechanical design being worked out for constructing 33cmx100cm unit chambers and 1mx1m planes for DHCAL testing

June 11, 2011