

Cosmic Ray Veto(CRV) R&D for Mu2e experiment

Yuri Oksuzian on behalf of CRV Mu2e

Outline

- Mu2e overview and motivation
- Cosmic Ray Veto(CRV) overview
- Cosmic rays(CR) background
- CRV
 - PMT based prototype
 - SiPM based single counter test beam studies
- Summary

Goal is 99.99% CR veto efficiency

Mu2e overview

- Mu2e is the muon-to-electron conversion experiment
 - Proposed start date of 2018 and two years of data taking.

Goal:

- Search for neutrino-less muon decay in the field of nucleus
- Single event sensitivity!

- Measure
$$R_{\mu e} = \frac{\Gamma(\mu^- + (A,Z) \to e^- + (A,Z))}{\Gamma(\mu^- + (A,Z) \to \nu_\mu + (A,Z-1))}$$

- Designed sensitivity of $R_{\mu e}$ <6x10⁻¹⁷ at 90% CL
- 4 orders of magnitude more sensitive than existing limit.

WHY?

- Any signal is a sign of new physics
- Both complementing and extending LHC
- Testing mass scales at 10⁴ TeV, not directly reachable on any collider
- Many models beyond Standard Model predict CLFV at observable rates for Mu2e

Mu2e overview

- Protons produce pions in the production target
- Pions transported in the transport solenoid. Pions decay to muons
- Muons captured in the stopping target
- Conversion electrons are detected and measured in the tracker
- CRV system(not shown) surrounds detector solenoid and rejects events associated with cosmic rays
- To achieve required sensitivity we need CR induced background under control

CRV overview

- more than 1000m² needs to be covered
- Challenge: outstanding veto efficiency at reasonable cost
- Purpose is to veto conversion-like events produced by cosmic muons
- Proposed design of three layers of plastic scintillators read out by wavelength shifting(WLS) fibers and photomultipliers

CRV requirement

- Using GEANT4 detector simulation and Daya Bay package to generate cosmic rays
- Generated 0.5x10⁹ CR muons in [3-300] GeV window
- Only 2 events survive final event selection cuts
- To limit CR background events to less than 0.05 events, we need an inefficiency of 2x10⁻⁴ or better

- Perfect CR background event example
- Muon produces an electron in the stopping target
- Decays before entering bottom CRV one chance to veto.

Required photo-statistics

- To achieve desired inefficiency we will require 2 out 3 coincidence in CRV module
- Assuming each layer is independent, it will result in single layer efficiency of 99.4%

$$\varepsilon(2\text{of }3) = \varepsilon_{SL}^3 + 3\varepsilon_{SL}^2(1 - \varepsilon_{SL})$$

ε(layer)	ε (2of3)	1-ε(2of3)
99.4%	99.99%	0.0001
99.0%	99.97%	0.0003
98.0%	99.88%	0.0012
97.0%	99.74%	0.0026

Prototype test stand

- Mid 2009 shipped CRV prototype from William & Mary
- Commissioned CRV test stand at CDF
- Does not meet 99.99% veto efficiency requirement
- Set up two trigger paddles above and below CRV prototype
- Perform various measurements:
 - Light yield at various points from readout(RO) end
 - Efficiency versus the angle of incidence
- Studies are performed by summer students

Single scintillator strip

to PMT

CRV prototype results

- To meet the requirements of 99.99% efficiency we will need an improved light yield
- Various improvements will be considered
 - More fibers per counter
 - Thicker scintillator. Already produced
 - Holes instead of grooves
 - Different type of WLS fiber
 - Photomultiplier with higher Quantum Efficiency. SiPM?

Neutron Sensitivity

- The neutron flux in mu2e cavern is expected to be high
 - Make sure the neutron flux is not significant source of fake BG in CRV
 - CRV not more than 1% deadtime
- Portable CRV prototype to test the sensitivity to neutrons
 - BCF-92 WLS fiber and Hamamatsu PMT
 - Box commissioned and 10-15 <PE> achieved
- Neutron generator
 - ~2.8 MeV neutrons with flux of ~10 6 n/s
- Data collected and needs to be analyzed.

Single Counter

To improve the photo electron statistics we built and tested single counter strip

Readout end

	WLS(multi-clad)	Photo Multiplier
CRV prototype	1.4mm Bicron BCF-92	4x4 Hammamatsu H8711 PMT
Single counter	1.2 mm Kuraray Y-11 1500 ppm	1.2mm diameter IRST SiPM
Difference	Y-11 has longer attenuation length and better match for scintillator light emission	SiPM has higher Photo Detection Efficiency

Test Beam Studies

- Joined T995 collaboration in May
- Use proton beam at MTest to study single scintillator counter
 - 120 GeV protons, 4s spill every minute, 1-10KHz intensity
 - Trigger on coincidence 1x1 cm² upstream and 10x10 cm² downstream
- Advantages:
 - 1000 ev/spill: 15 minutes(beam) vs 2 days(cosmics)
 - Known beam position. Take vertical scans
 - Known angle of incidence
- 2 test beam runs in May and Sep of 2010

Setup

DAQ

- Fermilab-based electronics
- 300 digitization/sampling
- 12-bit ADC
 - Sample input signal at 4.7ns interval
 - ADC in time information
 - Dark current and signal pulses on the left picture
- Total charge is calculated in the signal region
- Front porch(FP) region is used for self calibration: to extract pedestal and single PE value

Cosmics vs Beam

- Fewer <PE> from test beam data expected:
 - Test beam protons hit head on. Cosmic muons have wide range of angle of incidence

Sum

Reminder:

- Using 3 layers of scintillator, we need CR veto efficiency of 99.99%
- Translates into 99.4% single layer efficiency
- Plots on the right show:
 - Sum of PE from three fibers in the signal region
 - Sum of PE from three fibers in the Front
 Porch(FP) background region
 - Signal and noise(dark current) rejection efficiency at 3.2 PE
- We can achieve required efficiency
- Not the final result and room to improve

We can reach 99.4% single layer efficiency

Summary

- Mu2e will perform a measurement 4 orders of magnitude better than the current limits
 - Complements and extends LHC results and probes physics at mass scales up to 10⁴ TeV
- Plan to have an approved Conceptual Design Report by the end of 2011
- CRV prototypes studies
 - Does not meet required efficiency yet, but room for improvement.
- Test beam studies
 - Observe promising increase in PE statistics, using SiPMs
 - 99.4% single layer efficiency seems achievable

Backup

Yuri Oksuzian, UVa

Attenuation curve

Setup at Lab 6

Fiber studies

- Study the angular light distribution from WLS fibers
 - Fiber/SiPM size matching
- Studies on
 - 1.2mm double-clad Kuraray(Y11) WLS Fiber
 - 1.4mm single-clad Bicron(BFC-92) WLS Fiber
- Summer student's project

As expected, more light is trapped at higher angles for 1.2mm multi-clad fiber

Test beam in May

- Far from optimal scintillator strip in May:
- 1.4 mm BFC-92 single-clad fiber
 - Smaller trapping efficiency => smaller(50%) light yield
- 1.2 mm IRST SiPM
 - bad match for the fiber size
- Lower SiPM gain
 - Smaller quantum efficiency

PE yield at ~4m

