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Kr Contamination
            Xe extracted from atmosphere        Kr remains at ppm level in commercial gas

The Problem (for XENON): 85Kr 
- β- emitter (99.6%), Emax = 687 keV 
- long-lived, t1/2 = 10.76 yr 
- irreducible background, scales with the volume 

 

must be further purified} cryogenic distillation
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Kr Contamination
The Problem (for me): 85Kr/Kr ~ 2 x 10-11

- must ensure Kr/Xe ~ 10-12 as needed for next generation DM detectors
                 85Kr/Xe ~ 10-23

- for 160kg of Xe, this is only ~7,000 85Kr atoms

     Unique double-coincidence signature, background-free but rate limited
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Method

• Developed at Argonne National Lab for radioactive dating1

• Traditional laser cooling and trapping techniques employed to count 
single Kr atoms at a time with extremely high selectivity

• Will be used to measure directly Kr/Xe < 1 ppt level

• 84Kr trapped (84Kr/Kr ~ 0.57 ), 85Kr inferred from known relative 
abundance2

• Initially calibrated and optimized with Ar to prevent Kr contamination of 
device

Atom Trap Trace Analysis (ATTA)

1. C. Y. Chen, et al., Ultrasensitive Isotope Trace Analyses with a Magneto-Optical Trap, Science 286, 1139 (1999) 
2. X. Du, et al., An atom trap system for practical 81Kr dating, Rev. Sci. Inst. 10, 3224 (2004)
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Principle of Operation

• Spectroscopy: Extremely narrow bandwidth laser with frequency 
locked to an atomic transition (isotope specific) 

• Doppler “cooling”: Laser red-shifted so that atoms moving towards the 
laser source will preferentially absorb. Absorption of laser light + 
isotropic spontaneous emission = effective force 

Laser Trapping Basics
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Principle of Operation

• Optical molasses: counter-propagating, red-shifted beams produce 
viscous force, reducing transverse velocity and increasing forward flux

• Zeeman Slower: 1D spatially varying magnetic field counteracts 
Doppler shift, allowing atoms to stay in resonance with coaxial laser 
as they slow down

• Magneto-Optical Trap (MOT): quadrupole magnetic field, 3 pairs of 
counter-propagating red-shifted beams

Traditional magneto-optical techniques
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Principle of Operation

• Optical molasses: counter-propagating, red-shifted beams produce 
viscous force, reducing transverse velocity and increasing forward flux

Traditional magneto-optical techniques

10cm interaction 
length
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Principle of Operation

• Optical molasses: counter-propagating, red-shifted beams produce 
viscous force, reducing transverse velocity and increasing forward flux

• Zeeman Slower: 1D spatially varying magnetic field counteracts 
Doppler shift to the energy levels, allowing atoms to stay in resonance 
with coaxial laser as they slow down

Traditional magneto-optical techniques

Magnetic field causes Zeeman shift in energy level

77.5cm
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19 sections
>2.4km of wire
Bmax ~180G



Principle of Operation

• Optical molasses: counter-propagating, red-shifted beams produce 
viscous force, reducing transverse velocity and increasing forward flux

• Zeeman Slower: 1D spatially varying magnetic field counteracts 
Doppler shift, allowing atoms to stay in resonance with coaxial laser 
as they slow down

• Magneto-Optical Trap (MOT): quadrupole magnetic field, 3 pairs of 
counter-propagating red-shifted beams

Traditional magneto-optical techniques
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Principle of Operation

- plasma discharge excites atoms 
to optically-accessible metastable state, 
Ar* (Kr*), λ = 811nm 

- three stages of 2D optical molasses 
collimate the Ar* (Kr*)

- Zeeman Slower slows atoms from 
~245m/s to ~10 m/s 

- Magneto-Optical Trap (MOT) traps 
single atoms

- fluorescence from trapped atoms 
imaged with a CCD camera

Implementation

The life of an atom in ATTA
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Principle of Operation
Implementation

- All stainless steel, high-temp bakeable 
- UHV, < 10-9 torr base pressure
- during gas flow, ~1 mtorr in source 
chamber, while MOT pressure remains 
< ~10-8 torr 

Vacuum System

Laser System
- single diode laser, amplified from 
~60mW to >1W
- robustly locked using reference gas 
cell to 811.7542nm (Ar*), 811.5132nm 
(Kr*)
- laser frequency detuned for TC, ZS, 
and MOT
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Current Status
Successfully trapped Ar* atoms in a MOT 

~0.5mm
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Current Status

~0.5mm

~106 atoms 

Density ~1.5*1010 atoms/cm3

MOT lifetime ~1.5s
Loading Rate ~105/s
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Preliminary Results

Successfully trapped Ar* atoms in a MOT 



Next Steps

• Optimize transverse cooling and loading into MOT

• Cool input gas to ~140K using pulse tube refrigerator

• Single atom detection using avalanche photodiode (Summer 2011)

• single atom at a time trapped in MOT for ~1s

• Calibrate loading rate using Xe with known Kr level (Fall 2011)

• Measure Xe from XENON100 experiment (Early 2012)

• sample size ~1L STP of Xe gas (sample destroyed)

• measurement time ~hours
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