The LHCb upgrade

Technology and Instrumentation in Particle Physics 2011 Chicago 9-14 June 2011

Abraham Gallas for the LHCb Collaboration

- Current LHCb performance
- LHCb upgrade plan & main issues
- Overview of the sub-detector modifications
- Summary & Conclusions

- Current LHCb goals:
 - Indirect search for new physics via CP asymmetries and rare decays
 - Focus on flavor physics with b and c decays
- Forward spectrometer designed to exploit huge $\sigma_{b\overline{b}}$ @LHC
 - $10^{12} b\overline{b}$ pairs produced per 2 year of data taking @ $\mathcal{L} = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - Access to all b-hadrons: B_d , B_u , B_s , b-baryons and B_c
- Big experimental challenge: $\sigma_{b\bar{b}} < 1\% \sigma_{inel}$ total, Bs of interest BR < 10⁻⁵
- Current LHCb : Collect ~5 fb⁻¹ before 2nd LHC shutdown 2017

eta of B-hadron

ATLAS/CMS

 10^{2}

10

Detector performance: vertexing & mass resolution

DE SANTIAGO

Detector performance: hadron PID

LHCb

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Detector performance: Particle Identification on B→ hh

No particle identification \rightarrow any 2 hadrons!

LHC

DE SANTIAGO DE COMPOSTELA

Detector performance: photon PID

LHCb

See talk by Frédéric Machefert

Detector performance: muon PID performance

DE COMPOSTELA

- Excellent performance of current detector in hadronic environment demonstrated:
 - vertexing, mass resolution, PID
 - High selectivity and low background
 - Very efficient trigger

-	2010	Muon trigger (J/ψ)	Hadron trigger (D ⁰)	
	Data	94.9±0.2%	60±4%	
	МС	93.3±0.2%	66%	

After recording ~5 fb⁻¹ time to double stats is too slow \rightarrow increase $\mathcal{L} \rightarrow$ Level-0 trigger loses efficiency because the <u>DAQ readout limited to</u>

M4 M3 M2

L0

e, γ

L0

had

Z 20m

Max 40 MHz

- CVCI ardware

Max 1 MH

Q

RICH1

L0

Upgrade plot and strategy

- U SC UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
- LHCb detector readout at 40MHz with a fully software based trigger:
 > Upgrade of all sub-detector Front-End electronics to 40 MHz readout
- Rebuild of all silicon detectors attached to the current 1MHz electronics
 VELO, IT, TT, RICH photo-detectors
- Remove some detectors due to increased occupancies or no necesity at higher luminosity
 - RICH1-aerogel, M1, possibly PS&SPD
- Eventually improved PID a low momenta:
- <u>Tight time schedule</u> \rightarrow try to optimize:
 - > Cost
 - Manpower
 - Time (R&D, production, installation)
- Re-use existing electronics & infrastructure as much as possible
- Develop common solutions for use by all sub-detectors
 - <u>e.g.</u>: use GBT @ 4.8 Gbit/s with zero suppression ~ 13,000 links with 8,300 optical fibers already installed in LHCb

- Mission of upgrade LHCb:
 - General purpose detector in the forward region with a 40 MHz Readout and a full software trigger.
 - Quark flavour physics main component but expand physics program to include:
 - Lepton flavour physics
 - Electroweak physics
 - Exotic searches
 - Possible due to full software trigger

Upgraded LHCb environment: *L* & Pile-up

LHCb operation (design):

- - $\rightarrow \mu^* \sim 0.42$

Upgrade operation:

- > $\mathcal{L} \sim 1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ with 25ns BX-ings
 - → ~ 26 MHz xings with ≥ 1 interaction

 $\rightarrow \mu \sim 2.13$

Current operation:

> LHC has < 2622 bunches so the μ ~2

* μ = number of visible pp collisions per bunch crossing

Upgraded LHCb environment: Occupancies & Irradiation

Tracking and Occupancy:Si can be operated without spilloverOuter Tracker straws: occupancy at limitGood PR experience now from 50 ns runningIncrease area coverage of IT and use faster gasMove to scintillating fibresMaterial Budget an important issue (occupancy,
momentum resolution)

Irradiation:

Integrated dose up by a factor 10 Affects mainly large η (trackers, inner part of calorimeter) Silicon will anyway be replaced and cooling optimised Experience from current experiment will guide decisions

Common DAQ architecture

Front-end electronics should:

LH

- Transmit collision data @ 40 MHz
- Zero-suppress to minimize data bandwidth
- The L0 hardware trigger is re-used to reduce the event rate to match the installed router and CPU farm capacity (staging). Initially run at 5~10 MHz

DE COMPOSTELA

Generic sub-detector readout & control:

LH

Common developments

TELL40: Common Back-End readout module:

- Modular mezzanine-based approach (diff tasks)
- Processing in FPGAs
- Format: Advanced-TCA motherboard (under investigation)
- Tests of high-speed links on proto-board: 12-way Optical I/Os (12 x > 4.8 Gb/s), GBT compatible
- ➢ 24 channels/mezzanine → up to 96/BE module
- Transmission to the DAQ using 10 Gb Ethernet

ACTEL Flash FPGA for front-end modules

- Advantages over ASICs: re-programmable, faster development time.
- Can they survive the radiation?
- Irradiation program started on A3PE1500
 Preliminary results up to 30 krad ok.

Z 20m

M3 M2

M1 RICH2

40 MHz

Calorimeters

Muon

Magnet

Upgrade LHCb Trigger

- ✓ trigger has all the event information
- ✓ runs in a stageable Event Filter Farm
- ✓ run at **5 times LHCb** luminosity (→ \mathcal{L} = 10³³ cm⁻²s⁻¹)
- big gain in signal efficiency with up to factor 7 for hadronic modes

↓ LLT	LLT custom	Signal efficiencies						
Low Level Trigger p_{T} of $h, \mu, e/\gamma$	electronics		LLT-rate (MHz)	1	5	10		
			$B_s \to \phi \phi$	0.12	0.51	0.82		
1 - 40 MHz			$B^0 \rightarrow K^* \mu \mu$	0.36	0.89	0.97		
All detectors inf	ormation		$B_s \rightarrow \phi \gamma$	0.39	0.92	1.00		
, · · · · · · · · · · · · · · · · · · ·			EFF size *	5×20)11 1	10×2011		
HLT	CPU <u>E</u> vent <u>F</u> ilter <u>F</u> arm		LLT-rate (MHz)		5.1	10.5		
tracking and vertexing			HLT1-rate (kHz)	2	270	570		
$p_{\rm T}$ and impact parameter cuts			HLT2-rate (kHz)		16	26		
inclusive/exclusive selections			Total signal efficiency					
		* See talk by	$B_s \to \phi \phi$	0	.29	0.50		
			$B^0 ightarrow K^* \mu \mu$	0	.75	0.85		
		Roel Aaij	$B_s \to \phi \gamma$	0	.43	0.53		
20 kHz	* Siz	e of the Event	Filter Farm available f	or the	2011 r	un ¹⁸		

VELO UPGRADE*

R&D ongoing

- Module layout and mechanics
- Sensor options:
 - Planar Si, 3D, Diamond
- CO₂ cooling
- FE electronics
- RF-foil of vacuum box

* See talk by Daniel Hynds

- Test Beam TimePix Telescope
- Results:
 - 2011 *JINST* **6** P05002 doi: 10.1088/1748-0221/6/05/P05002
 - arXiv:1103.2739v2 [physics.ins-det]

- Current tracker works already with upgrade level pile-up (but not yet with spillover)
- OT straw detector remains
 - Detector aging in hot area is still under investigation
 - Consider module replacements with 1mm Scintillating Fiber Tracker in hottest region, increase granularity. In conjunction with IT replacement.
 - Replace on-detector electronics by 40 MHz version (FPGA-TDCs):
 - re-use front-end
 - implement TDC (1ns) in ACTEL ProASIC FPGA
 - prototype already working

Main Tracker stations upgrade: OT, IT, TT

U SC UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

- Current IT and TT Si-strip detectors must be replaced:
 - 1 MHz Readout electronics integrated
- Two technologies:
 - Silicon strips:
 - > Development of a new rad-hard FE chip @ 40MHz
 - 250 µm Scintillating Fiber Tracker
 - > 8 layers (same X₀ as the Si-strip option)
 - Fibers coupled to a Silicon Photo-Multiplier (SiPM)
 - Signals outside acceptance with clear fibers:
 - SiPM shielding
 - > Cooling, electrical components
 - SiPM radiation tolerance under investigation
 - > ASIC to read out the SiPM under investigation

22

- RICH-1 and RICH-2 detectors are retained, replace HPDs (1 MHz internal Readout):
 - Baseline readout: replace pixel HPDs by MaPMTs & readout with 40 MHz custom ASIC
- Baseline MaPMTs (Hamamatsu):

R7600 vs R11265 (baseline):

8x8 pixels, 2.0x2.0 mm², 2.3 mm pitch (2.9 mm) 18.1x18.1 mm² active area (23.5x23.5 mm²) CE (simulation) : 80% (90%) Fractional coverage: 50% (80%)

Prototyping using 40 MHz Maroc-3 RO chip:

- Gain compensation
- Binary output

Digital functions in ACTEL Flash FPGA FE module.

R7600 characterization:

- Channel to channel gain variation (correction in FE)
- Excellent cross-talk (below 1%)
- ~10% gain reduction in 50 gauss B_L -field (25 gauss max B_L -field in LHCb)

3712 R7600/R11265 units for RICH1&2 ~238k #

- Time of Flight detector based on a 1 cm quartz plate, for the identification of p<10 GeV hadrons (replacing Aerogel) combined with DIRC technology:
 - TORCH=Time Of internally Reflected Cherencov light*
 - reconstruct photon flight time and direction in specially designed standoff box
 - Measure ToF of tracks with ~15 ps (~70 ps per photon)

* See talk by Neville Harnew

Calorimeters Upgrade

USC UNIVERSIDA DE SANTIAGO DE COMPOST

- ECAL and HCAL remain
 - Keep all modules & PMTs
 - Radiation tolerance of inner modules being assessed @ LHC tunnel
 - Reduce the PMTs gain by a factor 5 to keep same <current>
- PS and SPD might be removed (under study)
 - \succ (e/ γ /hadron separation later in HLT with the whole detector info.)
- New FEE to compensate for lower gain and to allow 40 MHz readout:

- > Digital part: prototype board to test FPGAs (flash/antifuse) for:
 - Radiation tolerance
 - Packing of Data @ 40 MHz

ASIC prototype

New digital electronics prototype

* See poster by Carlos Abellán

Muon Detector Upgrade

Muon detectors are already read out at 40 MHz in current L0 trigger

- Front-end electronics can be kept
- Remove detector M1 (background and upgraded L0(LLT), room for TORCH) \geq

Investigations:

- MWPC aging :
 - tested at two sites up to 0.25 C/cm and 0.44 C/cm with no loss of performance
 - 1C/cm is considered as an upper limit for safe operation of MWPC chambers

Rate limitations of chambers and FE: \succ

- High-rate performance tested @ CERN-GIF no saturation effect up to 30nA/cm² (factor 2 for 10³³)
- No deterioration in the FE electronics up to 1MHz \geq

Accur	Accumulated charge (C/cm) for 50 fb ⁻¹							Maximum rates/channel MHz @ 10 ³³ cm ⁻² s ⁻¹							
		R1	R2	R3	R4			\rightarrow		R1	R2	R3	R4		
R	M2	0.67	0.42	0.10	0.02			R	M2	0.81	0.55	0.12	0.10		
	M3	0.17	0.08	0.02	0.01				M3	0.24	0.11	0.03	0.04		
	M4	0.22	0.06	0.01	0.004				M4	0.09	0.07	0.04	0.03		
¥	M5	0.15	0.03	0.01	0.003		¥		M5	0.07	0.07	0.04	0.02		

Ζ

A possible schedule*

LHC had a very bright startup:

- 2010: 250 bunches with ca. 2.6 10¹³ ppb
- 2011: 1092 bunches and beyond Luminosity > 10 10³²cm²
- Plan to run at 7 TeV for 2011 and 2012+
- 18 month <u>shutdown 2013-2014</u>: to repair splices →13-14 TeV
 - GPDs 1st phase upgrade (e.g. ATLAS b-layer)
- Next shutdown ~ 2018:
 - Full luminosity upgrade of LHC GPDs 2nd phase upgrade for "nominal" lumi
 - LHCb full upgrade to 40MHz R/O

- The LHCb experiment has demonstrated very successful operation in a hadronic and high multiplicity environment in 2010 & 2011:
 - Excellent vertexing, PID and tracking performances give confidence that the upgrade will be successful
- LHCb has a firm plan to upgrade in 2018:
 - Read out entire detector at 40 MHz with a fully software-based trigger @ $\mathcal{L} \sim 10^{33}$ cm⁻² s⁻¹
 - Massive statistical power
 - Independent of the LHC luminosity upgrade
 - No major detector changes needed, except for VELO, ST and RICH
 - The sub-detectors electronic developments are well underway
- Given its forward geometry, its excellent tracking and PID capabilities and the foresee flexible software-based trigger, the upgraded LHCb detector:
 - is an ideal detector for the next generation of quark flavour physics experiments
 - provides unique and complementary capabilities for New Physics studies beyond flavour physics
- Submitted upgrade LOI to LHCC beginning of March [CERN-LHCC-2011-001]

Back-up slides

	Exploration	Precision studies	1
	Search for $B_s \to \mu^+ \mu^-$ down to SM	Measure unitarity triangle angle γ to	
	value	$\sim 4^{\circ}$ to permit meaningful CKM tests	
	Search for mixing induced CP violation		
Current	in B_s system $(2\beta_s)$ down to SM value	Search for CPV in charm	
LHCb			
	Look for non-SM behaviour in forward-		
	backward asymmetry of $B^0 \to K^* \mu^+ \mu^-$		
 ~5 fb⁻¹			
	Look for evidence of non-SM photon		
	polarisation in exclusive $b \to s\gamma^{(*)}$	$\mathcal{M}_{\text{comm}} \mathcal{P}(\mathcal{D}_{\text{comm}}, \pm, \pm) \neq 0$	
	Search for $B^0 \to \mu^+ \mu^-$	Measure $\mathcal{B}(B_s \to \mu^+ \mu^-)$ to a	
		precision of $\sim 10\%$ of SM value	1
	Study other kinematical observables	Measure $2\beta_s$ to precision	
	in $B^0 \to K^* \mu^+ \mu^-$, e.g. $A_T(2)$	< 20% of SM value	
			1=
Upgraded		Measure γ to < 1° to match	
LHCb	CPV studies with gluonic	anticipated theory improvements	
	penguins e.g. $B_s \rightarrow \phi \phi$		
		Charm CPV search below 10^{-4}	
CO f h.1	Measure CP violation in		
~50 fb⁻¹	$B_s \operatorname{mixing} (A_{fs}^s)$	Measure photon polarisation in	
		exclusive $b \to s \gamma^{(*)}$ to the % level	