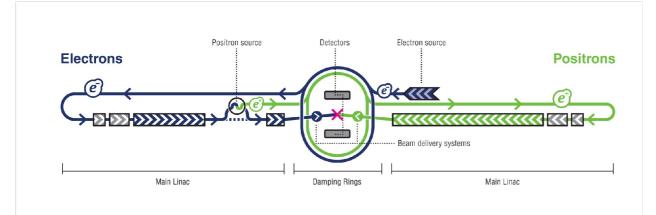
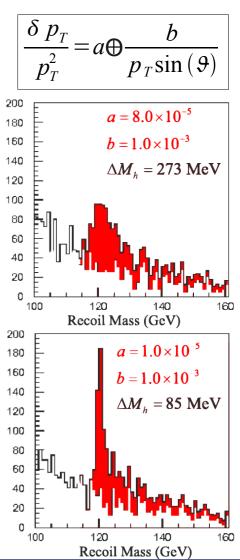
Development of a TPC for an ILC Detector

Technology and Instrumentation in Particle Physics '11

June 11th 2011

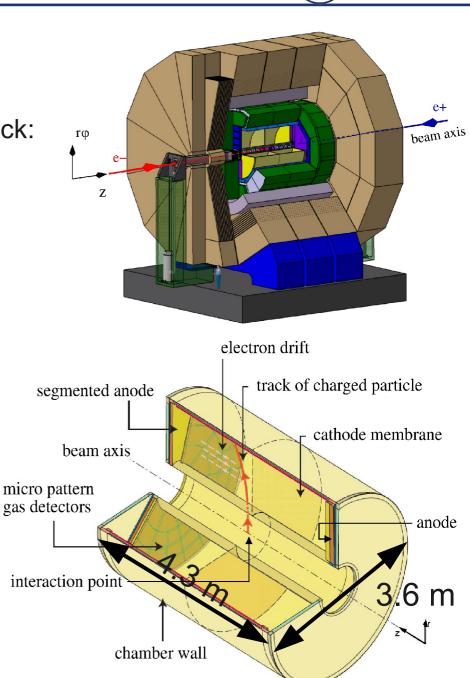

Ralf Diener on behalf of the LCTPC collaboration



ILC - International Linear Collider

- Linear electron positron collider, length: ~ 31km
- Tunable center of mass energy of 200-500 GeV (option to run at Z peak, 1 TeV)
- Two detectors with push-pull concept

- Momentum resolution: $\sigma_{_{1/p}} < 9x10^{-5}/GeV/c (TPC only) (1/10 x LEP)$ $\sigma_{_{1/p}} < 2x10^{-5}/GeV/c (complete ILD tracking)$
- Higgs recoil mass: $e^+e^- \rightarrow ZH (Z \rightarrow \mu\mu/ee) + X$
- Needs to fit into Particle Flow ^[*] concept: [*] Particle flow: the aim to reconstruct every particle in the best suited sub detector
 - Good track separation
 - Very light weight (limited material in front of calorimeters)
 - Good pattern recognition
 In e⁺e⁻→ZZ, WW, hZ and HA more than half of the events contain one or more K⁰_s or Λ⁰

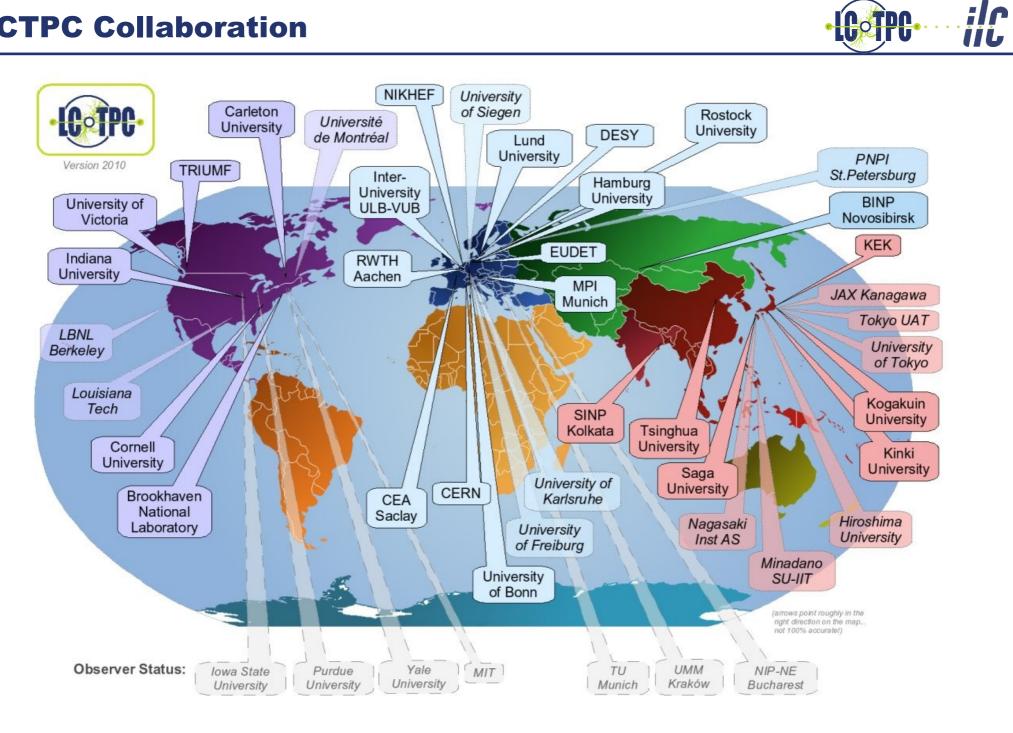


🙀 Ralf Diener, DESY

A TPC at the ILD

- ILD: a multi purpose detector for the ILC
 - TPC as main tracker
 - Robust tracking, ~ 200 space points per track:
 - Easy pattern recognition
 - Robust towards machine backgrounds
 - dE/dx-measurement input to particle ID
 - $\sigma \le 100 \mu m (r\phi)$ @ 3.5 T and $\le 500 \mu m (rz)$

- Well suited for Particle Flow concept:
 - Good track separation
 - Good pattern recognition
 - Very lightweight (material budget < 0.04 X₀)



Design Challenges

Field cage Endplate Cathode	Mechanical properties (field quality) Material budget Electrical stability
Amplification structure	Technology choice: MPGD Electrical and mechanical stability Integration: large area coverage ↔ dead space Ion back-drift
Readout structure	Pad or pixel based Compactness and integration Cooling, power pulsing
Reconstruction	Calibration and alignment Correction of field inhomogeneities

LCTPC Collaboration

Overview of LCTPC R&D Plan

Small Prototypes

Proof of Principle of MPGD Detector

Ionization and Diffusion (TPC gas)

Electronics

First field cage designs

Point resolution

Large Prototype

Tracking including all corrections:

F- & B-field

Alignment

Calibrations

Electronics

Software

Momentum resolution

Track separation

dE/dX

LC TPC

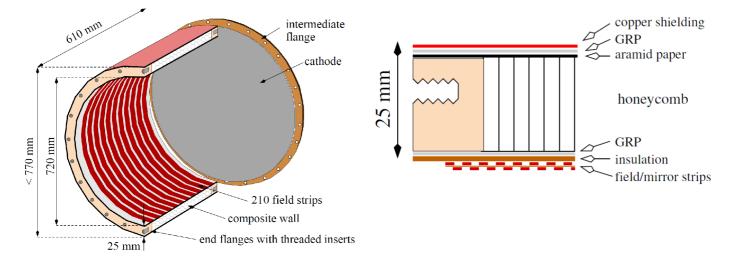
Advanced end plate

Electronics

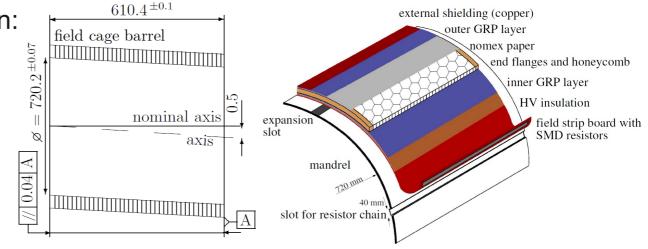
More simulations (ion disks)

System engineering

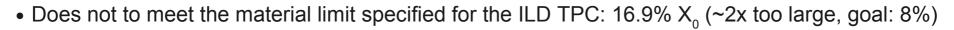
Cooperation with other detectors



"Conceptual" engineering design


Large TPC Prototype Fieldcage

- Based on experience with small prototypes
 - Made of composite materials
 - Ø 72cm, L=61cm


- Due to fabrication imperfection:
 - Field homogeneity requirements (ΔE/E ≈ 10⁻⁴) not met
 - 2nd field cage planned
 - Mandrel worked over and measured

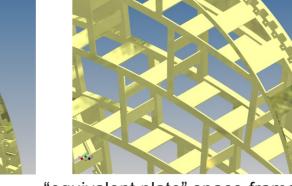
Large TPC Prototype Endplate

- LP1 endplate
 - Developed to provide the precision required for ILD:
 - Precision features are accurate to ~30 µm
 - Accuracy achieved with a 5-step machining process developed at Cornell

Inside the chamber

- Next step: lighten structure
 - Design results from several studies:
 - LP1 current endplate
 - LP1.5 space-frame designs, FEA (Finite Element Analysis) of models
 - Small test structures, FEA and measurements
 - 7.5% Χ₀ material, 23 μm deflection (100N (22lbs) in the center module)
 - Future studies will include construction and measurements using a new LP1.5 endplate

"strut" space-frame design


small test beams

that represent

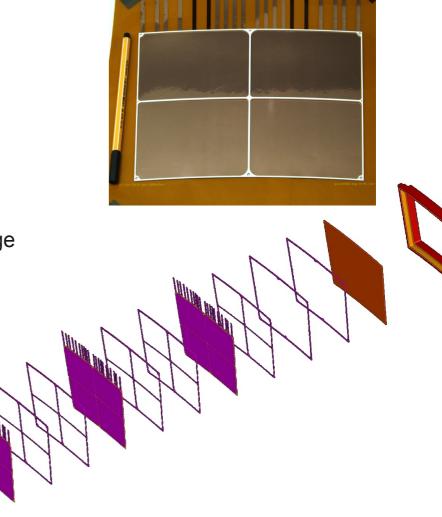
one diameter of

the LP1 endplate

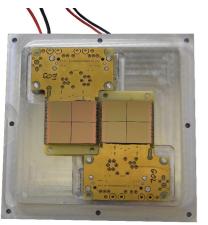
"equivalent plate" space-frame design

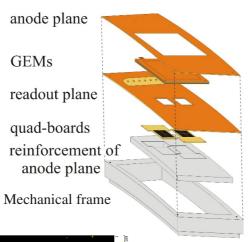
IIL

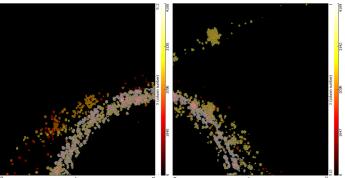
Outside the chamber



- Designed to be similar to modules to be used in ILD TPC
- Dimensions: ~ 23x17cm²
- Several implementations using different gas amplification (Micromegas & GEMs) and read-out combinations available
 - Example: Grid GEMs with pad read-out (ceramic grid to support the GEM foils)
 - Lightweight, integrated structure
 - Improved flatness of GEM foil:
 - less gain variations
 - better electric field homogeneity in the TPC
 - simpler construction and possibility to cover large areas with minimal dead space
 - Currently being tested in Large Prototype
 - "Stretched" GEMs with pad read-out: see talk by Martin Ljunggren
 - Micromegas with pad read-out: see talk by Paul Colas
 - Pixel read-out: next slide

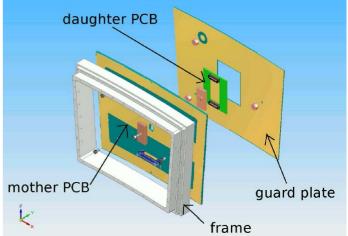





Pixel Read-Out

IL

- Typically read-out with pads ca. 1x4-6 mm² \rightarrow Time Pix chip read-out 55x55 μ m²
- 'Ultimate' resolution \rightarrow limited only by gas diffusion
- GEMs and Time Pix



- Due to diffusion between GEMs signal sizes around 40-100 pixels \rightarrow high gas gains:
- Test larger pixels by combining original pixels to larger pads

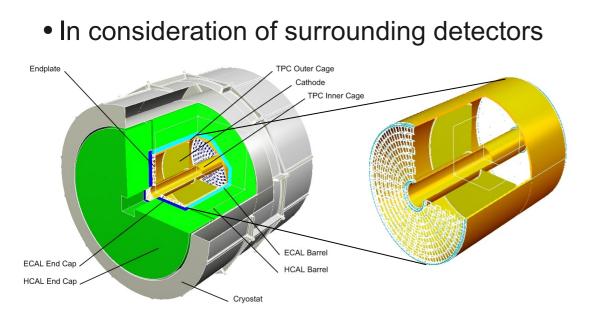
- Ingrids: Micromegas on top of Timepix chip
 - Holes aligned to pixels \rightarrow Measures single electrons
 - "Octopuce" module:

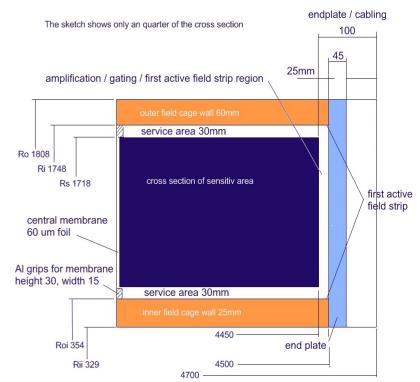


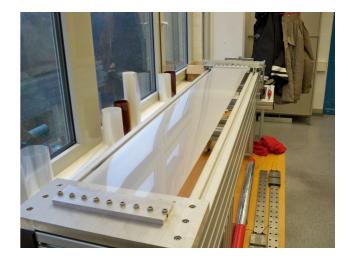
Octopuce Event Display

• He/iC₄H₁₀ (80/20), B = 1T (5 GeV beam electron with two delta curlers, Dec 2010)

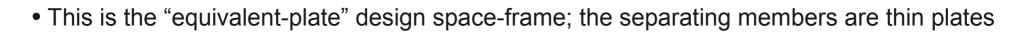
Testbeam Setup at DESY

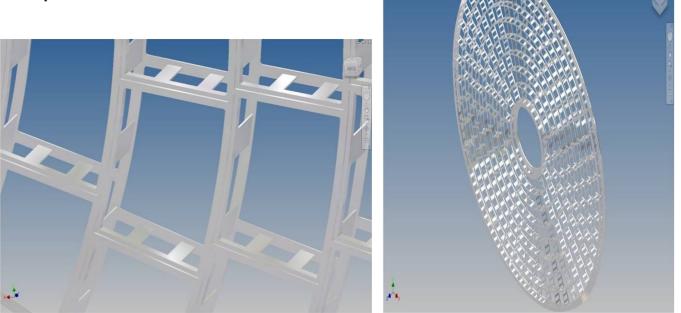

- Set up in DESY II test beam, area T24/1 (e+/e- from 1 to 6 GeV/c)
- Comprises:
 - PCMAG magnet
 - 1.25 T magnet
 - Currently persistent current and LHe reservoir This year modified to run with cryo coolers and closed cooling circle $\rightarrow \frac{1}{2}$ year break
 - Mounted on movable lifting stage (3 axis)
 - Control and safety system being currently completed
 - HV and gas system including slow control system
 - Constantly under extension
 - Cosmic and beam trigger
 - Cosmic trigger just updated
 - Laser calibration system
- Outer silicon detector for reference
 - Work in progress based on ZEUS vertex detector




Towards the ILD TPC – Fieldcage & Cathode

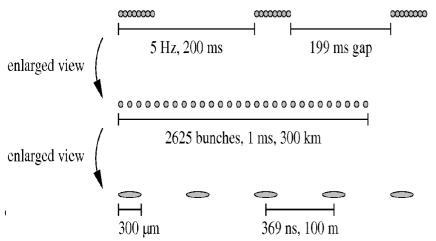
- Fieldcage:
 - Contact to an external company established to calculate mechanical properties of the field cage (composite materials)
- Cathode:
 - Several designs under discussion (foil, honeycomb...)
 - Foil tests with different kind of foils without copper coating
 - First tensile tests for one direction only Next: Build a tensile device for two axes

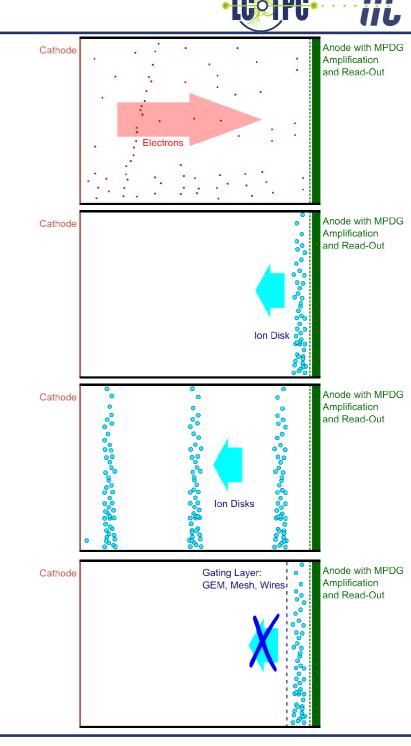



Towards the ILD TPC - Endplates

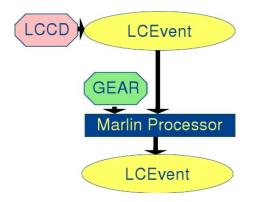
- The ILD endplate design is a space-frame
 - Shown here as the solid model used for the Finite-Element-Analysis (FEA)
 - Full thickness: 100mm Radius: 1.8m Mass: 136kg
 - Material thickness: 1.34g/cm², 6% X₀

- Design has rigidity and material equivalent to a strut design, which will be used for the new LP1 endplate
- Future ILD design can be either "strut" or "equivalent plate" design




- Currently in use ALTRO (GEM modules) and AFTER (Micromegas)
- Planned:
 - Continue integration work with PCA16+ALTRO and SALTRO16 or AFTER None of these is the final ILD electronics (insufficient packing, protection, too high power consumption, memory depth,...)
 - Start design work on a future GdSP (Gaseous detector Signal Processing) chip using synergy between ILD-TPC and SLHC muon chambers
- Cooling R&D: minimize power consumption and scalable cooling solution
 - Cool electronics, keep gas temperature, no heat radiation to surrounding detectors
 - Power pulsing: switch off electronics between bunch trains
 - Cooling by 2 Phase CO₂
 - Test board with equivalent heat production developed for R&D to test cooling solutions

 After each bunch train, a disk of positively charged ions from the amplification stage drifts back into the TPC volume


- Due to the very slow drift of ions (O(10⁵) slower than e⁻) up to three disks simultaneously in the gas volume
 → Field distortions
- Several groups working on simulation and R&D on hardware
- Ideas:
 - Gating with GEMs, Mesh, Wires

Software

- MarlinTPC (LCTPC software package)
 - Based on ILC software frameworks:
 - Data format/Persistency (LCIO), Processing chain (Marlin)
 - Geometry description (GEAR), Conditions Data (LCCD)
 - Goal: enable R&D groups to do detailed studies
 - Comprises simulation, reconstruction and analysis
 - Current efforts complete basic reconstruction:
 - Complete hit reconstruction implementation for all module types
 - Complete integration of track finding and fitting packages
 - Next Steps corrections and simulation:
 - Calibration and correction methods for inhomogeneous fields, mechanical alignment
 - Revise and extend the included detailed simulation for TPC prototypes Possible solution: Garfield++ in collaboration with RD51
- ILC software:
 - Model of ILD TPC for simulation (Geant4) including digitization (based on R&D results)
 - Complete tracking code currently under revision

- Large TPC prototype setup implemented and being used by R&D groups worldwide
- Several module types have been tested and further tests planned:
 - 7 Micromegas modules w. AFTER electronics
 - Tests with S-Altro 16 electronics
 - Farther future: move to hadron test beam
- Next Large Prototype (v1.5) being planned for 2012:
 - New fieldcage
 - Lightened endplate
- Efforts towards a TPC for an ILD detector ongoing
 - Lots of R&D activities on mechanics, electronics, cooling and their integration
 - Several open questions (backgrounds, ion back-flow, gating, ...)
- Detailed studies with small prototypes
- Software a step behind hardware, but efforts to close the gap ongoing
- Open issues in hardware and software identified and being addressed

- LCTPC collaboration homepage: http://www.lctpc.org/
- Last collaboration meeting: http://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=5157 (more detailed presentations about most topics mentioned here)
- ILD homepage: http://www.ilcild.org/
- ILC homepage: http://www.linearcollider.org/

