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The NA62 experiment
Measure the K*—x*vv B.R. with high accuracy
Physics motivations

Extract the V,, matrix element with a ~10 % error

A precise test of SM -> sensitive to new physics

Theory: (8.5+0.7)x10-11 8% error
Experim. ( 1.73*1-15_, ;)x10-10 7 candidates at BNL E787+E949

Goal: to collect ~100 decays with S/B ~ 10 (two years)

Signal signature very weak: just one wt* frack
Very low B.R. -> high intensity kaon beam, 10!2 background rejection power

VETO detectors and redundancy in the background suppression



The NA62 detector

Located at the CERN SPS

Unseparated Beam:
-> Momentum 756GeV/c
-> Kaon beam percentage ~6%
-> # Kaons decays 4.8x10'2/yr (40MHZz)
-> signal efficiency 10%
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CHANTT purpose

To reduce critical background induced by beam inelastic
interaction with collimator and Si beam tracker

~1.5m
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Inelastic interactions can be identified detecting the large angle
products using a set of "guard rings”

Six stations allow to cover hermetically the angular region between
34 mrad and 1.38 rad (for interactions coming from the center)

95% of inelastic interactions can be detected by CHANTT.



REQUIREMENTS

* Good time resolution (1ns)

* Good rate capability ( up to some tens
kHz/cm?)

* Low out-gassing ( vacuum)
« X-Y coordinate ( for timing correction )

Note: the 6 counters can be used as tracker,
with few mm spatial resolution, to monitor
beam halo muons close to the beam



Technological choice (I)

Scintillator bars with WLS fibers read by Si Photomultiplier

Scintillators: triangular shape for a gap-
free and self-sustaining structure o 4l -

Improve space resolution ,‘ A

3.3cm

WLS fibers: allow the SiPM-scintillator coupling with
excellent optical properties

SiPM low power consumption -> fine to operate in vacuum
high rate capability and excellent time resolution

Each station is made of two X-Y layers
composed of 22 and 24 scintillators bars
Total number of channels: 276




Technological choice (IT)

Scintillator: polystyrene produced NICADD_FNAL by
extrusion with 0.25 mm TiO, coating and ~1.8 mm hole

Main characteristics:
« Good LY (100% of Kuraray SCSN-81)

* Radiation hardness (5% degradation after 1 Mrad v )
* Fast response ( few ns)
* Low cost

WLS fiber: BCF92 multi-clad: fast emission time ( 2.7 ns)
mirrored at one side.

Silicon photomultiplier: Hamamatsu MPPC S10362 13-50C
« 1.3 mm side
* 50 um cell side
* Fill factor 61.5 %
Hecells: 676



Prototype : the fiber-SiPM connector

A custom connector has been designed

SR
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Gluing Fiber Insert SiPM
and connector A
together
Insert Fiber M
A Teflon cap define the reference plane into connector RemoveTeflon®
for the fiber It used to protect the until Teflon reference Reference.

polished side of the fiber during
transport and handling.

Fiber is glued using a small amount of
ARALDITE 2011

A 50 um tolerance in the fiber-
SiPM coupling is reached




Prototype : fibers-scintillator coupling

Fibers are glued into the scintillator bars using a low out-
gassing SCIONIX Silicon Rubber optical glue, Yo improve the
optical coupling between scintillator and fiber. (~50%
improvement)

The glue is injected from the
bottom using a syringe to reduce the
probability to produce air bubbles.




Prototype assembling




Preliminary measurements

* SiPM model selection
* Photo-electron yield estimation
* Time resolution



SiPM model selection

Three different Hamamatsu MPPC were tested. The number
of photoelectron of 5 SiPM of each type was measured using
a Sr°0 source as reference, at the Vop bias voltage

MPPC | Side size (mm) | Cell size (um) F|IIfactor(%

13-50 61.5
11-50 1 50 400 61.5
11-100 1 100 100 78.5

| |

The 13-50 type has the greatest PeY
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Photo-electron yield

We selected the response to perpendicular cosmic rays, of
a couple of[cin’rilla’rors (plane)
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Fast 20X amplification after 1.5 m coaxial cable

NPeY/plane = Npel+Npe2 = Q1/Q1(1pe)+Q2/Q2(1pe) ~ constant



Dark spectrum

The single photoelectron charge measured using dark spectrum
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PeY Response
+ Clear anti-correlation observed, due to the
triangular shape of the bars
* O(100) photoelectrons summing the two bars

+ ~25 p.e./ MeV
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Time resolution

We measured time resolution with an experimental
setup similar to the final one:

* Pre-amplification after 1.5 m of coaxial
cable (to avoid to insert amplifier inside
the vacuum)

* No direct charge but Time Over
Threshold available for slewing correction



Front-end electronic in NA62

Feed

1.5 m‘ coaX. cable

Custom boards Evolution of LHCB TELL!
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Time resolution raw

We acquired signal with a oscilloscope ( 5 6s/s, 500 MHz BW)

Both charge and TOT available, 200 ps resolution
* No time slewing correction

+ O(15) pe threshold
+ O(400) ps trigger jitter measured independently
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Time slewing correction

* Fit of time vs charge : |
parameterization szt Time vs charge

- Time correction e
improves time
resolution on single
channels et
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ToT vs Charge

Software implementation of
a ToT with known features
of the LNF ToT board

Checks of ToT vs Q

Try to use ToT instead of Q
to correct for time slewing
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Time resolut
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Realistic time resolution
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RMS 0.9148
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Constant 183.7+4.7
Mean -0.1679 + 0.0146

Sigma 0.7193 + 0.0113

0.72 ns

After proper individual channel 1O

subtraction time of the event will be

1g_;iven by the first fired channel or by
he average.

Almost same result of using ToT or Q
to correct for time slewing

OgOO) ps from trigger not
subtracted

But data taking at fixed position along
the bar. Expect 1.5 ns/sqrt(12) = 430
ps if we will not be able to correct for
xy position of the hit (e.g. for
multiplicity reasons)

O(750) ps conservative time
resolution for the detector



Conclusions

We designed a detector to veto inelastic
background

A first complete prototype station has
been constructed

The best SiPM type has been chosen

Measured "realistic” time resolution is 750
ps, better than needed

Out-gassing measurement show out-gas
rates compatible with vacuum requests

Electronic prototype board successfully
tested



Spares



Radiation hardness

By Monte Carlo simulation we estimate the two main neutron
contributions: primary protons on the target and from inelastic
interactions with GTK. We expect 108 neq/cmz/yr from each

From literature an integrated flux of 4x10° n,,/cm?is known to be
acceptable.

Reaching I.F. of 2-3 x10° n,,/cm?increase the dark current of one
order of magnitude.
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Measurement strategy

in flight decay technique, high momentum kaons

— no beam background w.r.to stopping kaon experiments
-> improvement in the n° induced background

kinematical reconstruction - two and tree body bk supp
precise timing - to match the n* with the right K*
almost hermetic photon vetos - n° rejection

particle id. - K/n (primary beam) and n*/u* (final decay)

1. Kinematic rejection: GTracker,

2. Precise Timing: , GTracker, Rich
3. Photon Vetos:

4. PId: Rich, , muon Veto



Kinematic reconstruction

two bk free regions

~92%

§ Kinematically K-
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Particle Identification and photon VETO

Rejection factor needed: 1012

Table of rejection factors for two body decays

decay  RF. high efficiency detectors:
Kt—n*n® 104
K'—uv 10 Photon veto: for K*->m*n’ supp.

) | :icH and MUON VETO

Not constrained decays (8%) for muon suppression
f KR K oy other possible source of background:
& Koot s,/ * beam related

- beam interaction with the last GT
station or with the residual gas

sV . Saracino DPF2009 29



Relevance of a precise measurement

1) Extract the V,, matrix element
with a ~10 % error

2) Accurate determination of
unitarity triangle independent
of that executed within the B
system -

(0,0)

(1,0)

If LHC discovers new particles

the BR measurement will provide a
very helpful tool to discriminate
among different models

G. Saracin«

A precise test of SM ->
sensitive to new physics

New physics effects could be seen
without significant signals in B, ; decays
and, in specific scenarios, even without
new particles within the LHC reach
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Vacuum tests

The prototype was tested under vacuum

The results are compatible with the NA62
out-gas limit




Prototype assembling

Once all the bars are produced, they are glued together forming two layers with fibers
running perpendicularly

FIRST DAY

Second day




