NOνA Data Acquisition System

TIPP 2011

Sue Kasahara, University of MN

for the NOνA DAQ Group:

and the NOνA Collaboration
The NOvA Collaboration

140 Collaborators in 26 Institutions from 4 Countries

Argonne, Athens, Caltech, Charles, CTU Prague, Fermilab, FZU, Harvard, Indiana, Lebedev Physical Institute, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, INR Moscow, Iowa State, South Carolina, SMU, Stanford, Tennessee, Texas-Austin, Texas-Dallas, Tufts, Virginia, Wichita State, William & Mary

Jun 11, 2011

S. Kasahara, TIPP 2011 in Chicago, IL
NOvA is a second generation neutrino oscillation experiment in the NuMI beam.

Near and Far Detectors placed 14 mrad off the beam axis.

Optimized for the detection of $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillations:
- Narrow band neutrino beam. L/E \sim 400 km/GeV
- Primary goals: Measure θ_{13}, mass hierarchy, δ_{CP}

DAQ systems for both detectors are functionally equivalent.
NOvA Far Detector
Ash River, MN

- Beneficial Occupancy of Far Detector Building – Apr, 2011
- Readout of First Detector Block ~ Early 2012
- Completion of Detector Assembly ~ Early 2014

Jun 11, 2011
S. Kasahara, TIPP 2011 in Chicago, IL
• Near Detector Cavern Excavation Begins Mar, 2012
• 100 m below the surface
• Prototype Near Detector on Surface (NDOS) – Taking Data Now!
Far Detector
- 930 Planes (15.6 m x 15.6 m)
- 360000 cells
- Cosmic Ray Muon Rate:
 - \(~200\) kHz (2-3 m overburden)
 - Avg Hits/muon \(~200\)
 - Hit Rate/detector = 40 MHz
 - Hit Rate/cell = 110 Hz

Near Detector
- 196 Planes (3m x 4m) + 10 Steel/Scint Plane Pairs ("Muon Catcher")
- 16000 cells
- Cosmic Ray Muon Rate:
 - \(~50\) Hz (105 m overburden)
 - Avg Hits/muon \(~50\)
 - Hit Rate/detector = 2.5 kHz
 - Hit Rate/cell = 0.2 Hz
- In-Spill Rate:
 - 10 \(\mu\)s duration every 1.33 s
 - 30 neutrino events/spill
 - 100 hits/event
 - Hit Rate/cell = 20 kHz (Instantaneous)
Detector Technology

- Detectors composed of highly reflective PVC extrusions
- Filled with liquid scintillator (mineral oil + 5% pseudocumene)
- Each cell readout by a wavelength shifting fiber onto one pixel of a 32-pixel avalanche photodiode (APD)
 - 30 PE from far end of cell into APD for MIP
- Num cells: 360000 (Far), 16000 (Near)
Design of DAQ driven by goals of experiment:

- **Beam Neutrino Events:**
 - 10 μs beam spill => 30 μs trigger window for each spill
 - Period ~1.3 s
 - Beam Spill signal:
 - Near Det: Spill signal sent via ACNET ~200 μs before Neutrino Beam
 - Far Det: 90-95% of Spill signals received within 1 s, ~100% within 10 s via Internet

- **Calibration Events (Cosmic Rays):**
 - 100x Beam Spill trigger window, randomly sampled

- **Other Physics Events (not primary goal of experiment):**
 - Supernova, Magnetic Monopoles, High Energy ν’s, ?, ...
 - SN Explosion at 10 kpc (33000 light years) results in thousands of ν’s within $\mathcal{O}(10)$ seconds in Far Detector
NOvA DAQ Introduction

- **Design goals met with a DAQ system which has:**
 - Front End Electronics which read out continuously with no dead time
 - This allows selection of events to be made downstream in the DAQ Buffer Farm with software applied triggers
 - A Buffer Farm in which data can be stored for 20 seconds or more while waiting for:
 - A remote spill trigger (sent from Fermilab to the Far Detector site)
 - A decision regarding whether or not an interesting physics event has occurred (e.g. Supernova)
 - A Timing System with compensation for the large geographic area covered by the Far Detector

- **DAQ Systems for both detectors are functionally equivalent**
 - In the following slides, the numbers of components refer to the Far Detector =>
Front End Boards (FEBs)

- APD pixels sampled at 2 MHz by Front End Boards at Far Det, 8 MHz at Near Det
 - Higher detector activity during beam spill at Near Det requires higher time resolution
- FEB operated in triggerless, continuous readout mode with no dead time
- Signal recognition/zero suppression done in real time by FPGA
 - Data compared to a pixel-by-pixel programmable threshold

Response:
- ~30 photo-electrons from MIP at far end of cell (10-12 MeV of deposition in the scint)
- 4 PE in total noise => Light yield gives a minimum Sig/Noise 10:1 (far end)

Avalanche Photo Diodes:
- 85% Quantum Efficiency
- Gain~100
- cooled to -15°C for 2PE dark noise
Front End Boards (FEBs)

- FEB FPGA uses Digital Signal Processing (DSP) to extract pulse height and timing edge.
- Timing resolution better than digitization rate using fit of signal to ideal response to interpolate true pulse leading edge.
 - Both “Matched Filtering” and “Dual Correlated Sampling” DSP algorithms have been explored.
 - Dual Correlated Sampling in use at Prototype Near Detector.

Raw data is matched to ideal response function in the FPGA, to extract pulse height and timing edge. Timing resolution is a function of Sig/Noise (10:1 min) giving a timing resolution of < 30ns.
Data Concentrator Modules (DCMs)
Data Concentrator Modules (DCMs)

- DCMs attach to racks on sides and top of detector
- One DCM reads out up to 64 FEBs; each of which reads out 32 APD pixels
- Purpose:
 - Consolidate hit data from FEBs into 5 ms time slice optimal for data transfer to downstream Buffer Nodes
 - Program, configure, and monitor FEBs
 - Pass Timing System clock, sync to FEBs

*PDB=Power Distribution Box
Data Concentrator Modules (DCM)

- **Data Flow is left to right**
 - FEB FPGA produces timing markers at periodic intervals (50 μs) interspersed with digitized hits
 - The digitized hits are consolidated by the DCM FPGA to 50 μs time slices containing data from all 64 FEBs
 - An application running on the DCM PowerPC CPU consolidates this data further to a longer time slice (5 ms) and routes this time slice to downstream buffer node for further processing.

Jun 11, 2011 S. Kasahara, TIPP 2011 in Chicago, IL
Data Concentrator Modules (DCMs)

- 5 ms time slices of data are routed by the DCM to downstream Buffer Nodes in Round Robin fashion.
- All hit data from throughout the detector corresponding to one 5 ms time slice is routed to the same Buffer Node.
- The Buffer Node will select data from this time slice corresponding to a Trigger.

(Animation is idealized – network packet buffering will cause slices to be staggered in their arrival at buffer nodes)

Jun 11, 2011
S. Kasahara, TIPP 2011 in Chicago, IL

18
Buffer Nodes & Trigger

- A Buffer Node is a commodity server
- Data received from DCM is buffered for a minimum of 20 s
- Selects data corresponding to trigger window received from Global Trigger for output
- Also provides support for “Data Driven” triggers
 - Feedback loop to Global Trigger. Trigger issued if consensus of buffer nodes.

Diagram:

- Buffer Node
- Global Trigger (Issued to all Buffer Nodes)
- Spill Server
- Calibration Pulser
- Global Trigger Processor
- Trigger Processor
- Data Driven Triggers System
- Event builder
 - Trigger Reception
 - Data Slice Pointer Table
 - Data Time Window Search
 - Triggered Data Output

Jun 11, 2011 S. Kasahara, TIPP 2011 in Chicago, IL
Data Logger

Slave Timing Distribution Unit

Master Timing Distribution Unit

STDU (17x)

MTDU

GPS

Accelerator Signals (Near Det Only)

Run Control

DAQ Monitor

Resource Manager

Config Manager

Global Trigger

Buffer Node

Buffer Node

Buffer Node

Data Logger/Dispatcher

Network Switch Array

Network Switch Array

Front End Board

Data Concentrator Module

Custom Electronics

Commodity Electronics

Data from Detector

Timing System

Control/Monitoring

Database

Event Display

Data Quality

Slave Timing Dist Unit

Jun 11, 2011

S. Kasahara, TIPP 2011 in Chicago, IL
• Single Data Logger is a commodity server
• Data Blocks received from Buffer Nodes are merged to form Event
• Events written to file. Archived to FNAL mass storage via separate File Transfer system.
• Events also written to shared memory for Dispatch to quasi-online consumers such as Online Monitoring and Online Event Display.
Expected Data Rates

<table>
<thead>
<tr>
<th></th>
<th>Near</th>
<th></th>
<th>Far</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Rate/Component (kB/s)</td>
<td>Number</td>
<td>Data Rate/Component (kB/s)</td>
<td>Number</td>
</tr>
<tr>
<td>FEB</td>
<td>120</td>
<td>500</td>
<td>160</td>
<td>11250</td>
</tr>
<tr>
<td>DCM</td>
<td>250</td>
<td>9</td>
<td>3000</td>
<td>180</td>
</tr>
<tr>
<td>Buffer Node In/Out*</td>
<td>300/4</td>
<td>8</td>
<td>3800/8</td>
<td>140</td>
</tr>
<tr>
<td>Data Logger</td>
<td>30</td>
<td>1</td>
<td>1100</td>
<td>1</td>
</tr>
</tbody>
</table>

Buffer Node Output rates consider Beam Spill + Calibration Triggers only
Timing System

- All FEBs/DCMs are sync’ed to a common high precision 16 MHz clock reference
- Clock distributed to DCMs by Slave Timing Distribution Units (STDUs) daisy-chained along backbone of detector
 - Two outputs per STDU supply clocks to two groups of 6 daisy-chained DCMs
- Master Timing Distribution Unit (MTDU) derives clock from GPS, distributes to first STDU in chain
 - Signal regenerated at each step in chain.

Jun 11, 2011
S. Kasahara, TIPP 2011 in Chicago, IL
Timing System

- TDUs have 4 differential pairs for communication: Sync, Command, Clock, and Sync Echo
- STDUs have “Delay Learn” feature to compensate for cable length propagation delays using TOF/2 method
 - When in Learn mode, each STDU will start a timer on next Sync that will run until it receives a Sync Echo
 - This time can be used to self-correct for propagation delays => synchronization within +/- ½ clock cycle
Run Control

- Provides overall control of the DAQ system.
- All DAQ components implement a well defined state model and, under the command of Run Control, make transitions between states.
 - Implemented as client/server model
 - Written in C++ using QT tools to implement GUI
• **Message Passing System handles control & status messages**
 - Uses OpenSplice DDS from Prism Tech for low level message transmission
 - NOvA specific layers provide ease-of-use
 - Publish/subscribe methodology
 - Supports 14 kHz message rate as measured at NDOS Prototype Detector
 - This is ~10x that needed for Near Detector
 - Will optimize towards preferred goal of ~2x faster for Far Detector
Message Facility

• Message Facility for logging Messages
 – Based on CMS Message Logger

• Capable of logging messages to multiple destinations
 – std out, file and/or msg server
 – Uses DDS for sending client messages to msg server

• GUI display for server
 – Allows server-side filtering
 – Used in control room

• Additional package “Message Analyzer” monitors messages to gauge overall detector health
 – Prototype version implemented at NDOS
DAQ Monitor

- Uses Ganglia Monitoring System at its base
 - Ganglia daemons gmetad and gmond collect and distribute metrics

- NOvA specific classes allow client applications to submit custom metrics
NDOS Prototype Detector Performance

- NDOS has served as a valuable test bed for commissioning all aspects of detector operation including the DAQ.

- Core functionality of DAQ system is working.

x-z view (top)

Neutrinos!

y-z view (side)

Peak in direction of beam

\[\cos \theta_{\text{NUMI}} = 1 \]

is in direction of off-axis beam

- NuMI Beam Spill Time

Jun 11, 2011

S. Kasahara, TIPP 2011 in Chicago, IL
Many performance gains and fixes of bugs have been made as a result of commissioning the Prototype Near Detector:

- This plot shows the through-put gain of the DCM as a result of optimizing software & network usage.

Number of active channels, live time, quality of data continue to improve over time:

- Number: instrumented channels
- Fraction: fraction of instrumented channels enabled.
Summary

• Much of the DAQ system has been implemented and deployed to the NOvA prototype detector (NDOS)

• Now shifting effort towards work to do before deploying at NOvA Far Detector:
 – Automatic Error Recovery
 – Scaling GUIs/Displays for larger number of nodes
 – Stress testing system for Rate capacity (underway)
 – Partition support (operate different sections of detector in different run modes)
 – Learn Delay mechanism of Timing System
 – Data Driven Trigger Support in Buffer Node
 – , etc..

• Thank you for your time!
NDOS Prototype Detector Data

- **NDOS Trigger**
 - Windows are large:
 - 500 µs window for both Beam & Calibration Triggers sampled at about 15 Hz
 - Beam spills only ~10 µs long
 - Click to see Animation =>
 - Will use only 30 µs window at Near and Far Detectors
 - Time slicing distinguishes events

Jun 11, 2011

S. Kasahara, TIPP 2011 in Chicago, IL
Neutrino Events in NOνA
Simulated

ν → $e^+ e^-$
Small shower from 2$^{\text{nd}}$-γ
NOvA would see burst of 5000 events for a supernova at the center of the galaxy