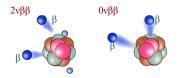
CUORE: Large Mass Bolometers for Neutrinoless Double Beta Decay Searches

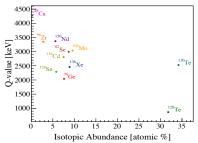
Ke Han, Berkeley Lab

2nd International Conference on Technology and Instrumentation in Particle Physics

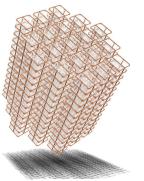

June 13, 2011



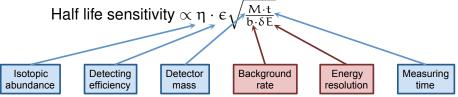
Neutrinoless double beta decay



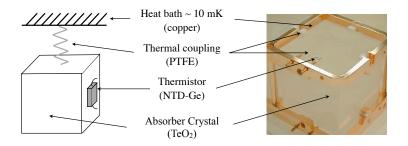
•
$$(A, Z) \rightarrow (A, Z+2) + 2e^- + 2\bar{\nu}_e$$


• $0\nu\beta\beta \Leftrightarrow E_{sum}$ of 2e = Q-value

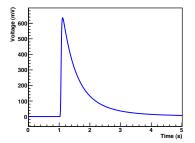
- Extremely rare ($T_{1/2}^{0\nu}>10^{24}$ y), only if ν is Majorana particle
- Candidate nuclei: ⁴⁸Ca, ⁷⁶Ge, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ...
- Large natural I. A., cost effective
- Q-value (2528 keV) above most of the γ backgrounds



Cryogenic Underground Observatory for Rare Events



- at Gran Sasso National Lab, Italy
- 988 bolometers at 10 mK.
 - 19 towers \times 13 floors \times 4 TeO₂ crystals
 - each crystal: 5x5x5 cm³, 750g
- 206 kg ¹³⁰Te; 741 kg crystals total
- Source = Detectors
 - \blacktriangleright high detecting efficiency at \sim 87%.
- Excellent energy resolution: 5 keV @ ROI.

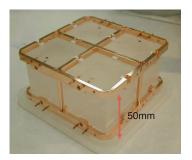

A large mass bolometer module

- Energy measurement from corresponding temperature rise.
 - Small phonon excitation energy; excellent intrinsic energy resolution
 - Resolution dominated by vibrational noise

• Slow process,
$$\tau = \frac{C}{G} \sim 1 \, \text{second}$$

Crystal - the absorber

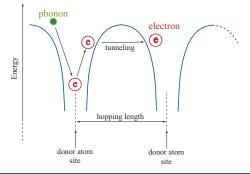
ß


• Material choice:

 $c(\mathsf{T}) = c_r(\mathsf{T}) + c_e(\mathsf{T})$

• High Debye temperature

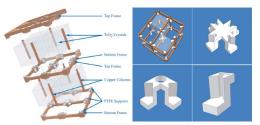
$$c_{r}(T) = \frac{12}{5}\pi^{4}k_{B}N_{A}\left(\frac{T}{\Theta_{D}}\right)^{3}$$

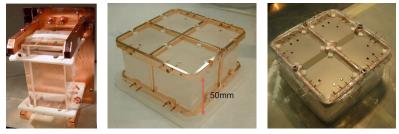

- Low working temperature
- Large crystals desired but still cost effective to grow.
 - 5x5x5 cm³, 750g
 - had 3x3x6; tried 6x6x6

- $C_r = 2.3 \times 10^{-3} \text{T}^3 \text{ J/K}$
 - ▲T=0.1 mK/MeV at 10mK
- Survives the heat cycling.
 - $\sqrt{\text{TeO}_2}$ × Te
- radiopure

CUORE Thermistors

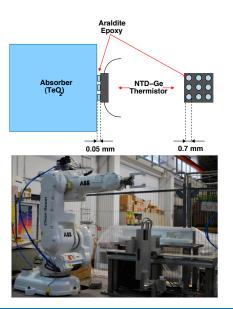
- Neutron Transmutation Doped (NTD) germanium thermistor
- Phonon induced tunneling (hopping) between impurity sites.
- $R = R_0 e^{\sqrt{T_0/T}}$; R_0 , T_0 determined by dosage.
- $R_0 \sim 1 \Omega, \, T_0 \sim 3 K$ for CUORE thermistor
- 100 MΩ at 10 mK.




Copper Frame and Teflon Holders

Copper Frame:

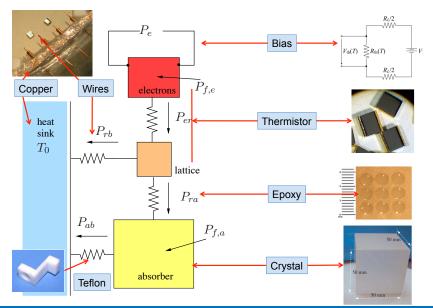
- Heat bath
- Background source
- Teflon holders
 - The weak thermal link
 - Reduce vibration noise

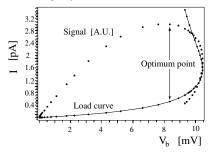

MiDBD

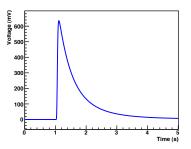
CUORICINO

CUORE

Gluing




Thermal Model



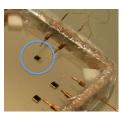
Bias Circuit and DAQ

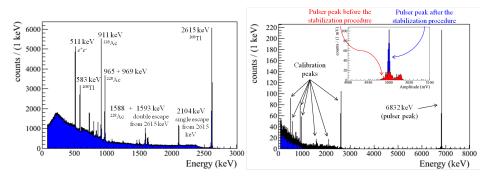
- Programmable bias voltage and load resistance.
- $R_L \gg R_{th}$, constant current bias \Rightarrow Electrothermal feedback.
- Optimum point (with max S/N) is close to maximum signal pulse height point.

- 18-bit high accuracy M series digitizer from NI
- 125 Hz sampling rate
- 5s pulse window, 1s pre-trigger
- Continuous data also recorded for offline triggering

Calibration

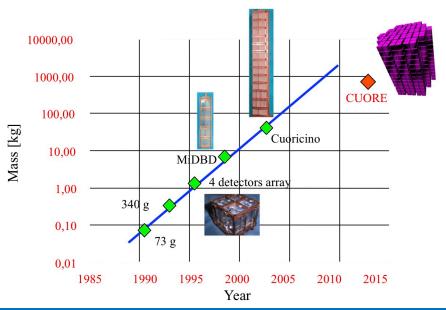
²³²Th source:

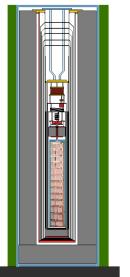

- once per month
- 2615 keV γ

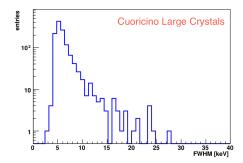

Radio-impurity

²¹⁰Po: α; ⁴⁰K: γ

Reference Si heater:


- One pulse per 5 min
- Negligible heat capacity
- Constant R over T
- Programmable pulser in FEE


Pursuit of rare decay events with bolometers


Cuoricino – little CUORE

- March 2003 to May 2008
- 11.3 kg of ¹³⁰Te out of 40.7 kg of TeO₂
- Total exposure 19.75 kg·y.
- Average resolution 6.3 keV at $Q_{\beta\beta}$

Improving energy resolutions

Maximizing S/N:

Signal pulse height

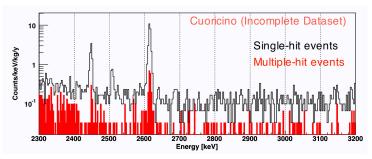
- Cryostat temperature
- Thermistor response
- Gluing
- Bias voltage

Noise

- Vibrations
- Microphonics
- Pre-Amp noise

CUORE baseline is certainly within reach; will aim for better


- Cuoricino: long term stability
- CCVR (best): 3keV FWHM at 5.4MeV
- CUORE baseline: 5 keV at ROI



Reducing background: anti-coincidence cuts

B

- Anti-coincidence cut (100 ms) window rejects *α* from crystal surfaces.
- In the ROI, the reduction is about 20%.
- Does not work for α from copper
- The array does self-shield some surfaces from copper

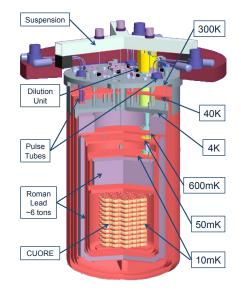
Reducing background: copper cleaning

- Cuoricino total BG: 0.169 \pm 0.006 cts/keV/kg/y
 - (~40%) Compton events from 2615 keV γ (cryostat).
 - (~50%) Degraded α from ²³⁸U, ²³²Th (copper).
 - (~10%) Degraded α from ²³⁸U, ²³²Th (crystal).
- Copper cleaning comparison: Three Tower Test
 - Comparable γ bg at Q_{ββ}
 - \times 3 reduction for α at 3 to 4 MeV
 - 0.06 cts/keV/kg/y

For CUORE, factoring in:

- New radiopure cryostat
- More anti-coincidence and self-shielding
- Target at 0.01 cts/keV/kg/y for CUORE.

CUORE



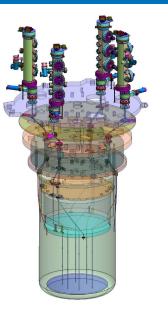
CUORE data taking in 2014

- Custom-built cryostat
 - ~ 1 ton bolometers at 10 mK
 - ~ 20 tons at various T
- Calibration system
- Detector assembly

Meanwhile, CUORE-0

- One tower in Cuoricino cryostat
- Now under construction
- Data taking start Nov 2011.

CUORE



CUORE data taking in 2014

- Custom-built cryostat
 - ~ 1 ton bolometers at 10 mK
 - ~ 20 tons at various T
- Calibration system
- Detector assembly

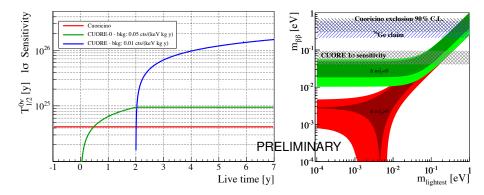
Meanwhile, CUORE-0

- One tower in Cuoricino cryostat
- Now under construction
- Data taking start Nov 2011.

CUORE

CUORE data taking in 2014

- Custom-built cryostat
 - ~ 1 ton bolometers at 10 mK
 - ~ 20 tons at various T
- Calibration system
- Detector assembly


Meanwhile, CUORE-0

- One tower in Cuoricino cryostat
- Now under construction
- Data taking start Nov 2011.

• $m_{\beta\beta} \approx 40 - 100$ meV for 5 yrs live time [PRELIMINARY]

TUDIOR

