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Experimental Conditions at CLIC
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CLIC: The Compact Linear Collider

• 3 TeV center of mass energy (staged construction possible: ~ 500 GeV initially)

• 2-beam acceleration using warm cavities: 100 MV/m gradient
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• Luminosity at 3 TeV: 5.9 x 1034  cm-2s-1

(2 x 1034 cm-2s-1 in top 1%)
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Conditions at CLIC

• The bunch structure at CLIC

5

20 ms 156 ns long bunch trains

0.5 ns bunch to bunch spacing
312 bunches per train

50 Hz repetition rate

➫ precise time-stamping required
➫ power pulsing of electronics possible
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Conditions at CLIC

• The bunch structure at CLIC

5

20 ms 156 ns long bunch trains

0.5 ns bunch to bunch spacing
312 bunches per train

50 Hz repetition rate

➫ precise time-stamping required
➫ power pulsing of electronics possible

Beamstrahlung driven by energy and focusing: 
mean bunch ΔE/E ~ 29%

• coherent e+e- pairs: 3.8 x 108 / bunch crossing

• incoherent e+e- pairs: 3.0 x 105 / bunch crossing

• γγ → hadrons interactions: 3.2 / bunch crossing
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Conditions at CLIC: Beamstrahlung Details

• Coherent e+e- pairs with angles < 10 mrad

‣ Crossing angle at CLIC: 20 mrad 
beam pipe opening angle ± 10 mrad 
for outgoing beam: 
coherent pairs disappear in beampipe

• incoherent pairs: swept away by solenoidal field, 
constrain innermost radius of vertex detector

6
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• γγ → hadrons: ~ 3.2 events / bx, 
~ 28 ch. particles in detector acceptance
~ 60 GeV energy
➫ 15 TeV dumped in detector during 
bunch train, forward peaked
Requires precise time stamping and 
clever event reconstruction
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CLIC Detector Design
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• General Considerations
• Vertex Detectors
• Calorimetry

• Engineering Studies
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General Considerations
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• Requirements for CLIC detectors driven by physics:

• Excellent resolution for multi-jet final states

• Hermetic coverage for missing energy measurements

• Precise track reconstruction

• Excellent flavor tagging: b & c identification and separation

• These requirements are satisfied by the validated ILC detector concepts 
ILD and SID

• Detector systems with large solenoid, event reconstruction based on Particle Flow

• Modifications are necessary to account for CLIC-specific issues:

• Higher energy: Jets up to the TeV region

• Higher backgrounds due to high energy and small beam size, 
combined with high bunch crossing rate
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CLIC Detectors - Main Features
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low-mass, high precision 
vertex detector

forward calorimeters 
for luminosity 
measurements and 
overall detector 
hermeticity

stabilized final 
focusing elements

high-field solenoid

precision tracking

potential 
compensation coils 
to limit stray field

highly granular 
calorimeters for PFA

magnet yoke with 
muon detector / 
tail catcher
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Overview: The CLIC Detector Concepts

• Two detectors, following the ILC designs: 
CLIC_ILD and CLIC_SID

10

Si pixel vertex detector
Si strip inner tracker

CLIC_ILD: TPC main tracker
CLIC_SID: Si strip main tracker

SiW electromagnetic calorimeter

Hadronic calorimeter with tungsten 
absorbers in barrel, steel in endcaps
Active medium: Scintillator tiles with 
SiPM readout currently studied, 
digital calorimeter with gas 
detectors also an option

All inside large solenoid

shown: CLIC_SID
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Changes to ILC Detector Concepts

• The overall detector philosophy, and the general design remains unchanged 
with respect to the ILC concepts 
- Still, many changes to address CLIC-specific issues in both CLIC_ILD and CLIC_SID:

11

redesigned yoke, 
changed instrumentation
added compensation coils

Solenoid dimensions 
roughly the same, 
CLIC_ILD at 4 T, 
CLIC_SID at 5 T

Hadron calorimeter 
increased in depth:
7.5 λI

Significant redesign 
of forward region

Vertex/inner detector:
increased radius, 
changed beam pipe
Modified forward 
tracking

Main tracker unchanged 

7 m

6.4 m

both CLIC concepts: same outer dimensions
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The Vertex Detector - Design Considerations
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Critical regions!

charged particles / m
m

2 / bx

inner barrel vertex layer
corner of beampipe

• Performance goal: Excellent secondary vertex resolution to identify heavy 
flavors, to discriminate between charm and bottom and tag τ decays
Resolution goal

• Move innermost layer of detector as close as possible to the interaction point
➫ limited by background!

Study for 
CLIC_ILD
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Critical regions!
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m
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For a low-energy CLIC option at 
500 GeV, the inner layer can move 
in by about 6 mm

At innermost layer of 
vertex detector: 
total of 
0.04 hits / mm2 / ns
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flavors, to discriminate between charm and bottom and tag τ decays
Resolution goal
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Pixel Vertex Detector Design

Resulting designs for CLIC_ILD / CLIC_SID:

• ILD: 
Be beam pipe at 29.4 mm, 0.6 mm thick

• SID: 
Be beam pipe at 25 mm, 0.5 mm thick 

• ILD: 3 double layers, 3 forward DL discs

• SID: 5 single layers, 8 forward discs

13
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Pixel Vertex Detector - Technology

• Requirements for technology:

• Low mass: O 0.1% X0 per detector layer (corresponds to just 100 µm Si!)
CLIC_ILD: 0.18% X0 per DL 2 x 50 µm Si, 134 µm carbon support)
CLIC_SID:  0.12% X0 per SL ( 50 µm Si, 130 µm carbon support) 

• Only achievable with low power: Powerpulsing at 50 Hz

• Forced gas-flow cooling wherever possible - Barrel layers

• Integrated liquid cooling solutions: micro-channel cooling in support structures

• Time stamping on the few ns level

• “Classical” solution: thinned hybrid pixels with 3D interconnects, 
small feature size for readout chips

• Alternatives: Semi-integrated CMOS active pixel sensors, SOI, ... 

• Rad-hardness not a critical issue: 
NIEL ~1010 neq / cm2 / year,  TID ~ 100 Gy / year

14

• Resolution goals require ~ 3 µm single hit resolution:  
20 x 20 µm2 pixels with analog readout
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The Calorimeters

• Based on the Particle Flow concept: Highly granular to provide shower 
separation within hadronic jets

• CLIC-specific: Increased depth to contain higher energies

15

symbols: with tailcatcher
lines: w/o tailcatcher

Simulation study of PFA 
performance in CLIC_ILD

Performance goal of 
3.5% jet energy resolution
over full energy range requires
7.5 λI thick HCAL

For reference:
ILD: 5.5 λI

SID: 4.8 λI
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The Hadron Calorimeter: Dense Absorbers

• No dead material between tracker and calorimeters for optimal PFA 
performance: Calorimeter has to be inside solenoid - Compactness required!

• Promising absorber material: Tungsten

16

Significantly reduced interaction length
Reduced sampling for electromagnetic subshowers 
due to short interaction length
Heavy nucleus: Richer time structure of shower?
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The Hadron Calorimeter: Dense Absorbers

• No dead material between tracker and calorimeters for optimal PFA 
performance: Calorimeter has to be inside solenoid - Compactness required!

• Promising absorber material: Tungsten

16

Significantly reduced interaction length
Reduced sampling for electromagnetic subshowers 
due to short interaction length
Heavy nucleus: Richer time structure of shower?

Test beam required:
CALICE analog HCAL active layers
Tungsten absorber plates

• Validation of Geant4 simulations used 
to evaluate full detector performance 

• Study of energy resolution, shower 
shapes, time structure
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Tungsten HCAL - First Beam Tests

• First beam campaign at CERN PS in 2010
Muon, hadron, electron beams up to 10 GeV

17

More data coming: 
Tests at SPS starting next week!
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• First beam campaign at CERN PS in 2010
Muon, hadron, electron beams up to 10 GeV

17

More data coming: 
Tests at SPS starting next week!

Measurements of time structure of 
hadronic showers in Tungsten HCAL:
Calo Session, Ontario, 15:00 today
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Magnet Systems

• Large solenoids for CLIC detectors push the technological limits 

• CLIC_SID most challenging: 5 T field - Extreme pressure on SC cable
Free bore 5.5 m, Length 6.2 m, Stored energy ~ 2.3 GJ, Energy/Mass ~14 kJ/kg
(CMS: 6 m, 12.5 m, 2.6 GJ, 11.6 kJ/kg)

18
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Conductor options 
under investigation 
- Cooperation 
between CERN, 
KEK and Swiss 
industry
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Mechanical Stability

• Final focusing magnets need extreme stabilization:
Vertical position of final quadrupole better than 0.15 nm RMS for f > 4 Hz
Required because of small beam size: vertical 1 nm, horizontal 40 nm, longitudinal 45 µm

• Permanent magnets + warm magnet for QD0 to reduce vibrations

• Supported from active stabilization, decoupled from detector 

• Passive high-mass low stiffness spring system to suppress high frequencies from ground

19

IP QD0

detector side accelerator tunnel
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IP QD0

detector side accelerator tunnel

40	
  ton	
  
dead-­‐load

4	
  tapered	
  steel	
  beams

Support	
  
beamsDamping system under development, 

simulations validated with mechanical experiment
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Two Detectors: Push-Pull

• Two detectors share one IR: Push-pull scheme also adopted by ILC

• CLIC Detector designs: Both detectors have equal outer dimensions: 
facilitates push-pull operations

20

mailto:frank.simon@universe-cluster.de
mailto:frank.simon@universe-cluster.de


Frank Simon (frank.simon@universe-cluster.de)Detector Systems at CLIC
TIPP2011, Chicago, IL, June 2011

Event Reconstruction

21
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CLIC Event Reconstruction

22

• Event reconstruction technique: Particle Flow

• Key challenge: Backgrounds from two-photon processes

• e+e- pairs in the vertex detectors

• hadrons in the main tracker and in the calorimeters

• The way to reject backgrounds: Timing

• Match the time of all reconstructed physics objects with the time of the event

• Assume ~ 10 ns timing in vertex detectors and Si trackers

• Key detectors: Calorimeters with ~1 ns cluster timing

• Long integration time in the HCAL to account for shower time structure

• More stringent cut on low pt particles (more likely to be background)
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Background Removal

23

• Beam related background from γγ → hadrons processes adds significant energy to 
events, in particular in the forward region - simulation chain fully validated

1 TeV Z ➝ uds
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• Beam related background from γγ → hadrons processes adds significant energy to 
events, in particular in the forward region - simulation chain fully validated

1 TeV Z ➝ uds

~ 60 BX, 1.4 TeV

+ γγ ➝ hadrons background
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Background Removal
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• Beam related background from γγ → hadrons processes adds significant energy to 
events, in particular in the forward region - simulation chain fully validated

1 TeV Z ➝ uds

realistic timing assumptions: 200 GeV

• Timing cuts reduce the impact of background significantly

~ 60 BX, 1.4 TeV

+ γγ ➝ hadrons background
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Impact of Timing Cuts

24

• Tight timing cuts in particular on low momentum particles affect jet energy 
resolution for low-energy jets

• For jets in the region of interest for a 3 TeV machine, the impact is small

Ej 45GeV 100GeV 250GeV 500GeV

CLIC_ILD_CDR,	
  v01-­‐11,	
  new	
  config 3.74	
  ±	
  0.05 3.02	
  ±	
  0.04 3.00	
  ±	
  0.04 3.20	
  ±	
  0.06

CLICTrackSelector,	
  50ns	
  cut 3.90	
  ±	
  0.05 3.13	
  ±	
  0.04 3.03	
  ±	
  0.04 3.21	
  ±	
  0.06

CLICPfoSelection,	
  loose 4.40	
  ±	
  0.06 3.34	
  ±	
  0.04 3.12	
  ±	
  0.04 3.27	
  ±	
  0.06

CLICPfoSelection,	
  default 5.18	
  ±	
  0.07 3.65	
  ±	
  0.05 3.20	
  ±	
  0.04 3.30	
  ±	
  0.06

CLICPfoSelection,	
  tight 6.00	
  ±	
  0.08 3.99	
  ±	
  0.05 3.35	
  ±	
  0.04 3.37	
  ±	
  0.06

jet energy resolution (RMS90) in %

• For lower energy operation (500 GeV), relaxed cuts will be used to recover 
performance also for lower energy jets
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Background Reduction in Physics Analysis

• Use of specific jet algorithms, momentum and geometry cuts, ...
are studied to obtain best possible precision -  Depends on physics channel

Example: Squark pair production

25

e+

e−
q̃R

¯̃qR

χ0
1

q

q̄

χ0
1

Signature: 2 jets + missing energy
- susceptible to hadronic background!
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Jet finding can reduce background effects considerably: Choose the right finder / metric!

kt, angular distance kt, ΔηΔφ
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Summary / Outlook

26
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Summary: Detector Concepts and Challenges at CLIC

27

• Experimental conditions at CLIC put stringent demands on the detector 
systems:

• Highly precise jet energy reconstruction up to TeV energies, precision tracking and 
powerful flavor tagging to meet the physics goals

• Time stamping in all detector systems to handle high background levels

• The starting point: ILC detector designs - Optimized for Particle Flow:
Meet already most of the performance requirements (with the exception of 
high energy jets) - Specific modifications:

• Increased depth of calorimeters - More compact absorbers

• Changed vertex detector geometry

• Increased mechanical stabilization of final focusing elements - small beam size!

• Redesigned forward region - not discussed here

• Time stamping on the few ns level in all detector systems to reduce background

• Use of time information in Particle Flow Algorithms to reduce background
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Outlook: R&D Challenges for CLIC Detector Systems

• Vertex detector:
Combine extremely low mass and low power with time stamping 
Power pulsing very likely indispensable to achieve the mass and power goals

• Calorimeters:
Explore tungsten as absorber material for the barrel HCAL
Time stamping in the calorimeters - Coming with the new generation of 
CALICE Electronics

• Mechanics:
Active and passive stabilization of beam focusing elements

• Magnets:
Develop conductors suited for a compact large-bore 5T solenoid

28
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Outlook: R&D Challenges for CLIC Detector Systems

• Vertex detector:
Combine extremely low mass and low power with time stamping 
Power pulsing very likely indispensable to achieve the mass and power goals

• Calorimeters:
Explore tungsten as absorber material for the barrel HCAL
Time stamping in the calorimeters - Coming with the new generation of 
CALICE Electronics

• Mechanics:
Active and passive stabilization of beam focusing elements

• Magnets:
Develop conductors suited for a compact large-bore 5T solenoid
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... several talks on some of these issues at this conference!

mailto:frank.simon@universe-cluster.de
mailto:frank.simon@universe-cluster.de

