

Composition and thickness dependence of secondary electron yield for MCP detector materials

Slade J. Jokela, Igor V. Veryovkin, Alexander V. Zinovev, Jeffrey W. Elam, Anil U. Mane, and Qing Peng

Argonne National Laboratory

Motivation

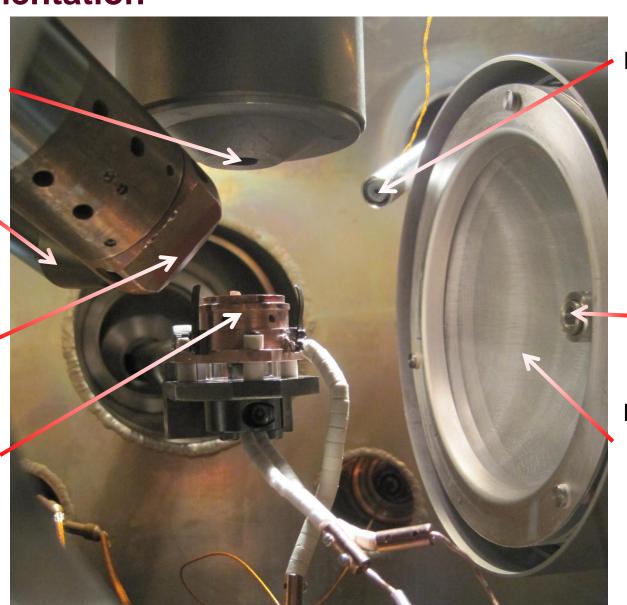
- Large Area Picosecond Photo-Detector Project (LAPPD)
 - http://psec.uchicago.edu
- "Frugal" Micro-Channel Plate (MCP) detectors
 - Modern technologies allow for the construction of MCPs from more cost-effective components and synthesis techniques
 - Porous, non-leaded glass (not effective as MCP on its own)
 - Atomic Layer Deposition (ALD) to functionalize the glass with secondary emissive material (MgO and Al₂O₃)
 - ALD allows for conformal coatings to be placed on any exposed surface (not a line of sight technique)

Purpose

- Characterize ALD-synthesized MgO and Al₂O₃
 - Determine how secondary electron emission (SEE) is influenced by:
 - Surface chemical composition
 - Direct effects of elements/compounds on secondary emission
 - Effects that dopants/defects have on secondary emission
 - Surface structure/morphology
 - Effects from electron or ion bombardment

Instrumentation

- Repurposed surface analysis equipment
 - Low Energy Electron Diffraction module (LEED)
 - Surface structure/morphology
 - Auger Electron Spectroscopy (AES)
 - Modified for Secondary Electron Emission (SEE) studies
 - Pulsed electron source and secondary electron collection
 - X-ray Photoelectron Spectroscopy (XPS)
 - Mg Kα
 - Ultraviolet Photoelectron Spectroscopy (UPS)
 - He I & He II UV emission
 - Hemispherical Energy Analyzer
 - Acquisition of XPS and UPS electron energy spectra
 - Ar⁺ source (up to 5 keV)
 - Surface cleaning and depth profiling


Instrumentation

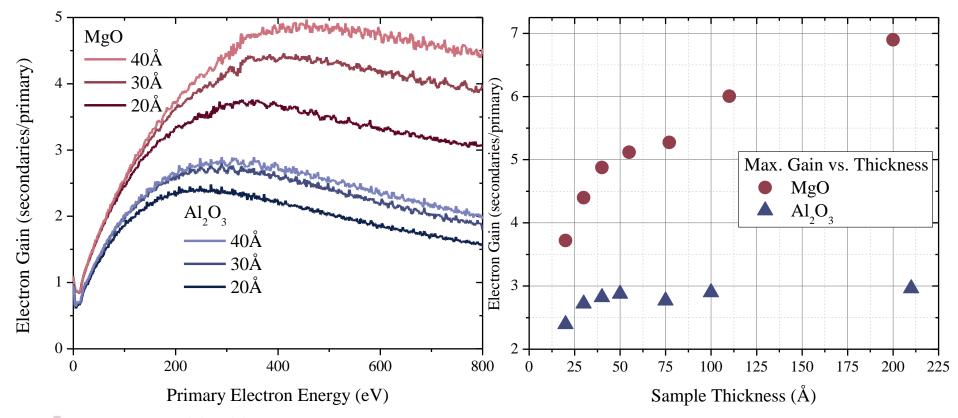
Hemispherical Electron Energy Analyzer

Ar+ Gun (obscurred)

X-ray Source (Mg Kα)

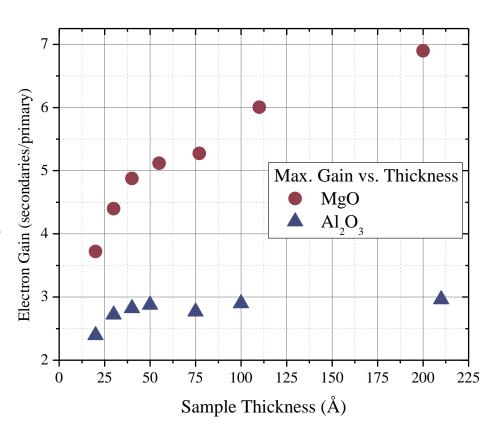
Heated Sample Stage

He UV Source

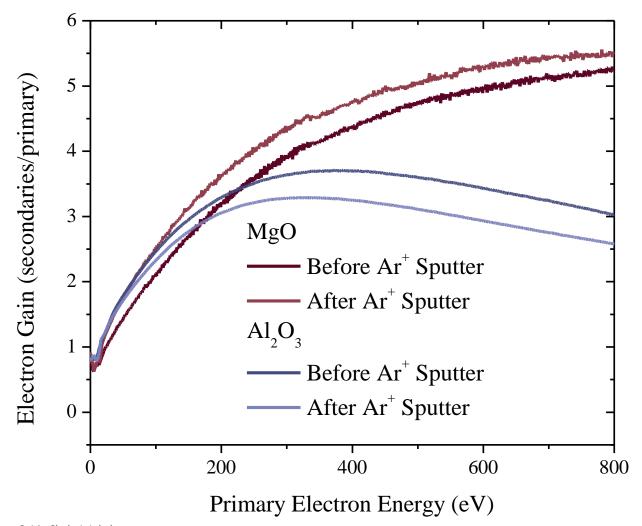

Electron Gun (0 to 1 keV)

LEED Module (Repurposed For SEY)

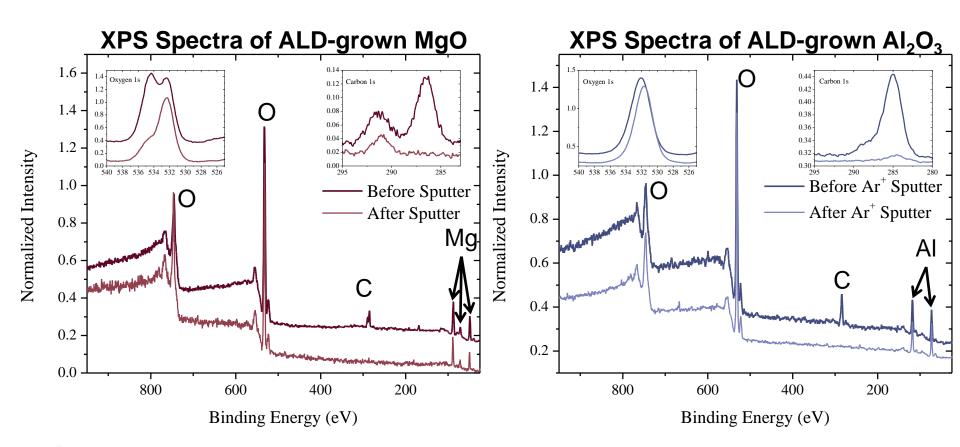
TIPP 2011 June 9-14


Study of Secondary Electron Yield vs. Material and Thickness

- ALD-synthesized MgO vs. Al₂O₃
 - Maximum gain and its corresponding energy generally increase with thickness


Study of Secondary Electron Yield vs. Material and Thickness

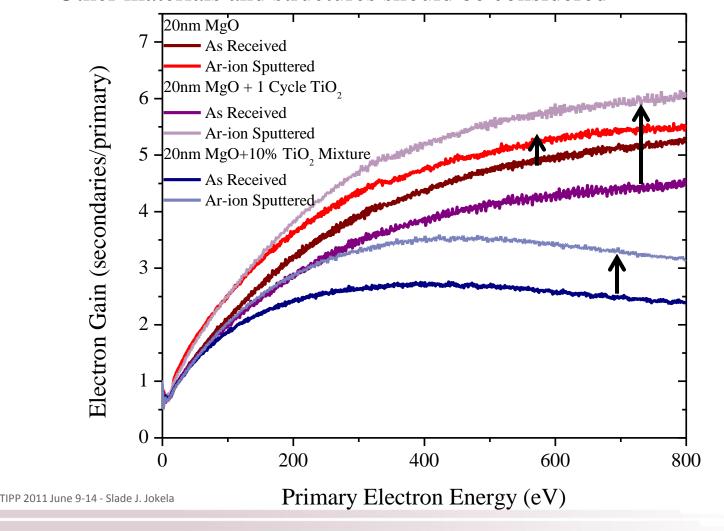
- Maximum in emission vs. thickness
 - Maximum escape length for a secondary electron
- Simulation Effort
 - Parameters from my
 measurements are used in MCP
 testing and simulation
 - Matthew Wetstein (ANL)
 - Zeke Insepov (ANL)
 - Valentin Ivenov (FNAL)


Secondary Electron Yield vs. Surface Composition

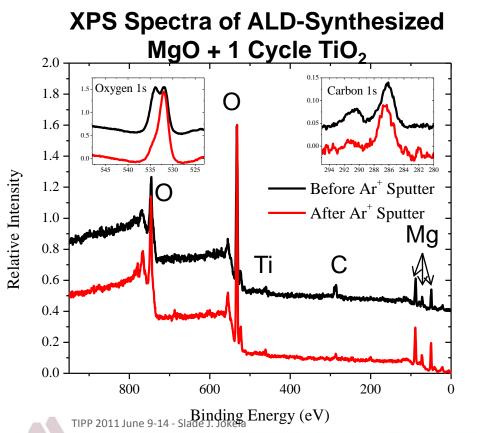
5 keV Ar⁺ was used to sputter-clean the sample

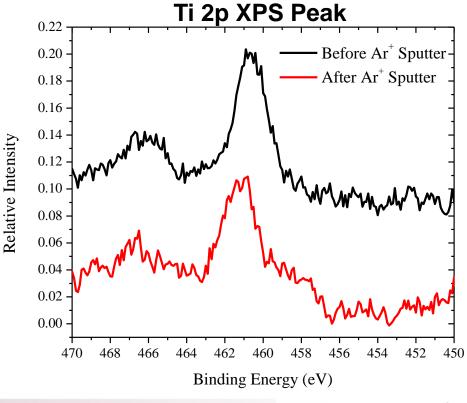
Secondary Electron Yield vs. Surface Composition

- XPS spectra show a decrease in surface carbon
 - Double oxygen and carbon peaks in MgO imply a C-O-type compound


Secondary Electron Yield vs. Surface Composition

- Carbon contamination seems to affect SEY
 - Sources of carbon include atmospheric and remnants of ALD precursors.
 - Emission increases when it is removed from MgO
 - Emission decreases when it is removed from Al₂O₃
 - The difference can be explained by:
 - Carbon species is less emissive than MgO but more emissive than Al₂O₃
 - The difference in bonding on MgO, as is evident in XPS spectra, results in an increase in work function
 - Surface structure and composition is drastically altered by ion bombardment
 - Preferential ion-sputtering
 - Ion Mixing
 - Recrystallization?


Study of SEY for New Materials


- Increased emission could be beneficial for MCPs
 - Other materials and structures should be considered

Study of SEY for New Materials

- TiO₂ is reported to have an emission yield of about 1.2
- Ar⁺ sputtering will not just remove material, but mix it
 - This Ti could behave as a dopant after mixing, decreasing work function

Summary

- MgO clearly has higher emission than Al₂O₃
- Ar⁺ sputtering produces different results in the two materials
 - A difference in carbon species on the surface may be responsible
 - Ion bombardment certainly changes surface morphology
- An initial study on MgO and TiO₂ layered materials proved interesting
 - As-synthesized samples showed lower emission than MgO alone
 - After Ar⁺ sputtering, all samples showed an increased emission
 - MgO with 1 ALD-cycle of TiO₂ showed the highest emission of all (postion-sputter)
 - Ar⁺ sputtering induces mixing in the surface components
 - Structural changes or doping could result

Future Work

- Inspection of surface composition and structure vs. electron exposure
 - Ageing in MCPs
- Ion-induced surface reconstruction
 - Ion mixing or surface recrystalization (MgO + TiO₂ study)
- Instrumentation for this study (all-in-one)
 - STM
 - SEM
 - Scanning AES (Auger electron spectroscopy)
 - Heated stage for thermal desorption studies
 - Gas exposure to determine effects of atmospheric gasses on "cleaned" surfaces

Thank you

ALD-Synthesis performed by:

Jeff Elam, Anil Mane, Qing Peng (Argonne National Laboratory)

Instrumentation and scientific expertise/support:

Igor Veryovkin and Alexander Zinovev (Argonne National Laboratory)

LAPPD Collaboration

Argonne National Laboratory's work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics under contract DE-AC02-06CH11357.

