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Motivation 

 Large Area Picosecond Photo-Detector Project (LAPPD) 

– http://psec.uchicago.edu  

 “Frugal” Micro-Channel Plate (MCP) detectors 

– Modern technologies allow for the construction of MCPs from more 

cost-effective components and synthesis techniques 

• Porous, non-leaded glass (not effective as MCP on its own) 

• Atomic Layer Deposition (ALD) to functionalize the glass with secondary 

emissive material (MgO and Al2O3) 

– ALD allows for conformal coatings to be placed on any exposed 

surface (not a line of sight technique) 
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Purpose 

 Characterize ALD-synthesized MgO and Al2O3 

– Determine how secondary electron emission (SEE) is influenced by: 

• Surface chemical composition 

– Direct effects of elements/compounds on secondary emission 

– Effects that dopants/defects have on secondary emission 

• Surface structure/morphology 

– Effects from electron or ion bombardment 
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Instrumentation 

 Repurposed surface analysis equipment 

– Low Energy Electron Diffraction module (LEED) 

• Surface structure/morphology 

• Auger Electron Spectroscopy (AES) 

• Modified for Secondary Electron Emission (SEE) studies 

– Pulsed electron source and secondary electron collection 

– X-ray Photoelectron Spectroscopy (XPS) 

• Mg Kα 

– Ultraviolet Photoelectron Spectroscopy (UPS) 

• He I & He II UV emission 

– Hemispherical Energy Analyzer 

• Acquisition of XPS and UPS electron energy spectra 

– Ar+ source (up to 5 keV) 

• Surface cleaning and depth profiling 
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Instrumentation 
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Study of Secondary Electron Yield vs. 

Material and Thickness 

 ALD-synthesized MgO vs. Al2O3 

– Maximum gain and its corresponding energy generally increase with 

thickness 
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Study of Secondary Electron Yield vs. 

Material and Thickness 

 Maximum in emission vs. 

thickness 

– Maximum escape length for a 

secondary electron 

 Simulation Effort 

– Parameters from my 

measurements are used in MCP 

testing and simulation 

• Matthew Wetstein (ANL) 

• Zeke Insepov (ANL) 

• Valentin Ivenov (FNAL) 
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Secondary Electron Yield vs. Surface Composition 

 5 keV Ar+ was used to sputter-clean the sample 
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Secondary Electron Yield vs. Surface Composition 

 XPS spectra show a decrease in surface carbon 

– Double oxygen and carbon peaks in MgO imply a C-O-type compound 
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Secondary Electron Yield vs. Surface Composition 

 Carbon contamination seems to affect SEY 

– Sources of carbon include atmospheric and remnants of ALD 

precursors. 

– Emission increases when it is removed from MgO 

– Emission decreases when it is removed from Al2O3 

– The difference can be explained by: 

• Carbon species is less emissive than MgO but more emissive than Al2O3 

• The difference in bonding on MgO, as is evident in XPS spectra, results in 

an increase in work function 

• Surface structure and composition is drastically altered by ion 

bombardment 

– Preferential ion-sputtering 

– Ion Mixing 

– Recrystallization? 
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Study of SEY for New Materials 

 Increased emission could be beneficial for MCPs 

– Other materials and structures should be considered 
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Study of SEY for New Materials 

 TiO2 is reported to have an emission yield of about 1.2 

 Ar+ sputtering will not just remove material, but mix it 

– This Ti could behave as a dopant after mixing, decreasing work 

function 
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Summary 

 MgO clearly has higher emission than Al2O3 

 Ar+ sputtering produces different results in the two materials 

– A difference in carbon species on the surface may be responsible 

– Ion bombardment certainly changes surface morphology 

 An initial study on MgO and TiO2 layered materials proved 

interesting 

– As-synthesized samples showed lower emission than MgO alone 

– After Ar+ sputtering, all samples showed an increased emission 

• MgO with 1 ALD-cycle of TiO2 showed the highest emission of all (post-

ion-sputter) 

• Ar+ sputtering induces mixing in the surface components 

– Structural changes or doping could result 
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Future Work 

 Inspection of surface composition and structure vs. electron 

exposure 

– Ageing in MCPs 

 Ion-induced surface reconstruction 

– Ion mixing or surface recrystaliztion (MgO + TiO2 study) 

 Instrumentation for this study (all-in-one) 

– STM 

– SEM 

– Scanning AES (Auger electron spectroscopy) 

– Heated stage for thermal desorption studies 

– Gas exposure to determine effects of atmospheric gasses on “cleaned” 

surfaces 
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Thank you 

ALD-Synthesis performed by: 

Jeff Elam, Anil Mane, Qing Peng (Argonne National Laboratory) 

Instrumentation and scientific expertise/support: 

Igor Veryovkin and Alexander Zinovev (Argonne National Laboratory) 

 

LAPPD Collaboration 
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