



# Development of Small-Pixel CZT and CdTe Detectors with Hybrid Pixel-Waveform Readout System

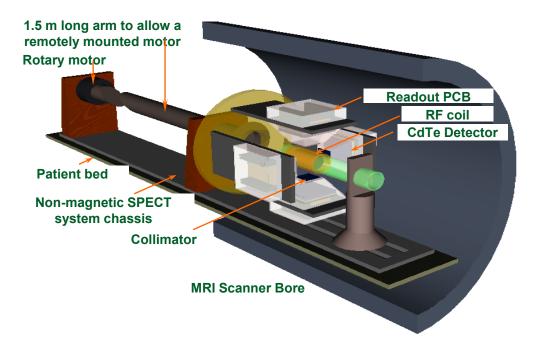
L.-J. Meng<sup>1,2,3</sup>

<sup>1</sup>Department of Nuclear Plasma and Radiological Engineering, <sup>2</sup>Department of Bioengineering, and <sup>3</sup>Beckman Institute for Advance Science and Technology, University of Illinois at Urbana-Champaign.

We would like to thank NCI (R21/R33CA004940, R21CA135736-01A1), DOE, Office of Biological and Environmental Research (DE-FG2-08ER6481) for their generous support for our work.

# Table of Contents

- The need for a compact and high resolution gamma ray detector for nuclear imaging applications.
- Previous efforts on the ERPC detectors.
- Development of small pixel CdTe and CZT detectors for nuclear medicine applications.
- Motivations for developing the hybrid pixel-waveform (HPWF) readout system
- Preliminary Results I: waveform-based timing estimation.
- Future outlook.

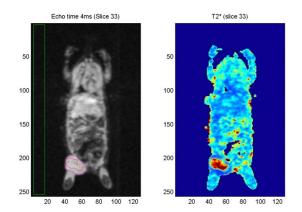

#### Motivation of Our Detector Development Effort

**One** CZT/CdTe **detector** architecture **that fits many** gamma ray applications – such as SPECT and PET for medical imaging, Coded aperture and Compton cameras for security and astrophysics applications?

We would like to have a detector that has

- □ Excellent spatial resolution in 3-D (a 100-250µm),
- □ Excellent timing resolution (a few ns),
- □ Excellent energy resolution (a few percent),
- □ Adequate count rate capability (250k per cm<sup>2</sup>),
- □ Being able to deal with multiple interaction events.
- All across a wide energy range 30 keV several MeV

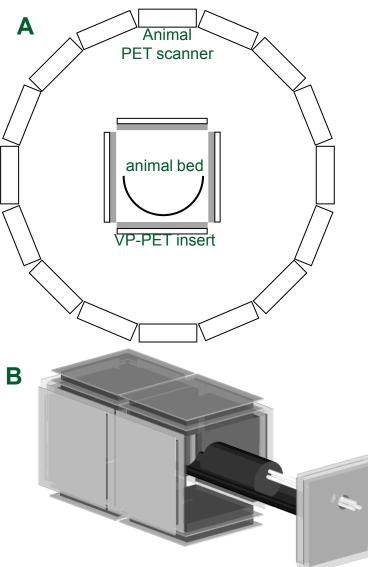
#### A High-Resolution MRI-Compatible SPECT System



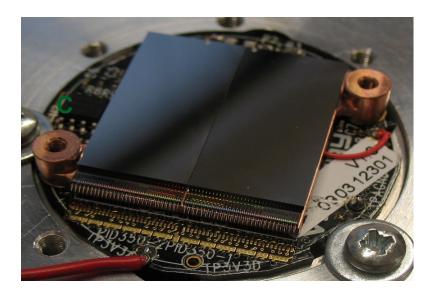

- We are developing a MRI-compatible SPECT system with four heads installed on a rotational gantry.
- Two key objectives: (a) demonstrate the capability of achieving an sub-500 µm SPECT resolution inside MRI scanner (b) provide a flexible platform for testing different detector and system designs





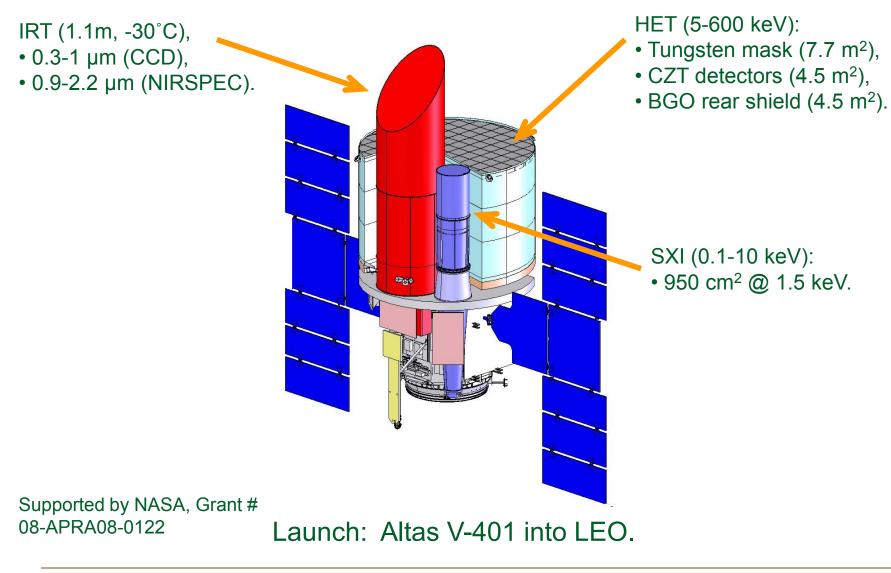

The Siemens Allegra 3 T MRI scanner at BIC that will be used in the combined SPECT/MRI System.




Left: A 3-D whole-body image of a rat acquired with the 3 T Allegra scanner. Right: T2\* relaxation of the tissues. The images were obtained with a multiecho fast low angle shot (FLASH) sequence written by Professor Brad Sutton of UIUC. It resulted in 0.5 mm isotropic resolution from an 8 minutes whole body scan.

NCI, R21/R33CA004940, R21CA135736-01A1.

# A Sub-500 $\mu\text{m}$ Resolution PET Insert

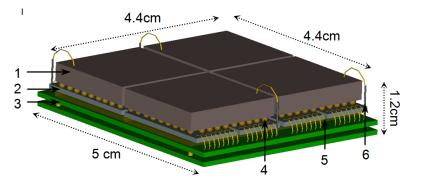



- (A) Geometry of a potential 4-panel VP-PET insert device inside an animal PET scanner.
- (B) A potential implementation of the detector technology proposed in this work.
- (C) A prototype PET detector developed for the PET application.

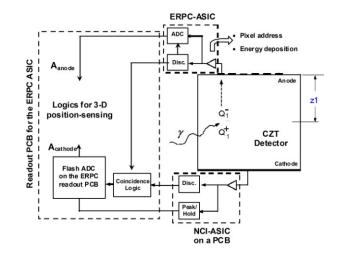


DOE, Office of Biological and Environmental Research (DE-FG2-08ER6481). PI Y. C. Tai, WashU

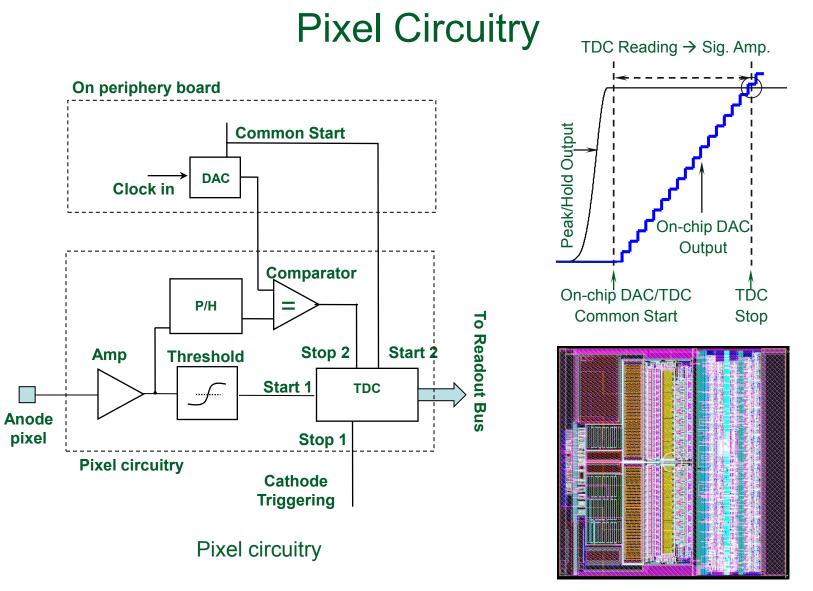
## Focal Plane Detector for the EXIST Mission




L. J. Meng, TIPP 2011


#### Energy-Resolved Photon Counting Detector – Design Concept and Considerations

Basic design target: generic, high performance and flexible.


- Hybrid photon detector concept with highly pixelated (pixel size: 350 μm) CdTe or CZT bump-bonded to 2-D readout ASIC – compact, high resolution.
- ADC on each channel all digital output, amplitude, time stamp, pixel address for each hit.
- □ Flexible sparse logic allowing signals from adjacent pixels to be summed together.



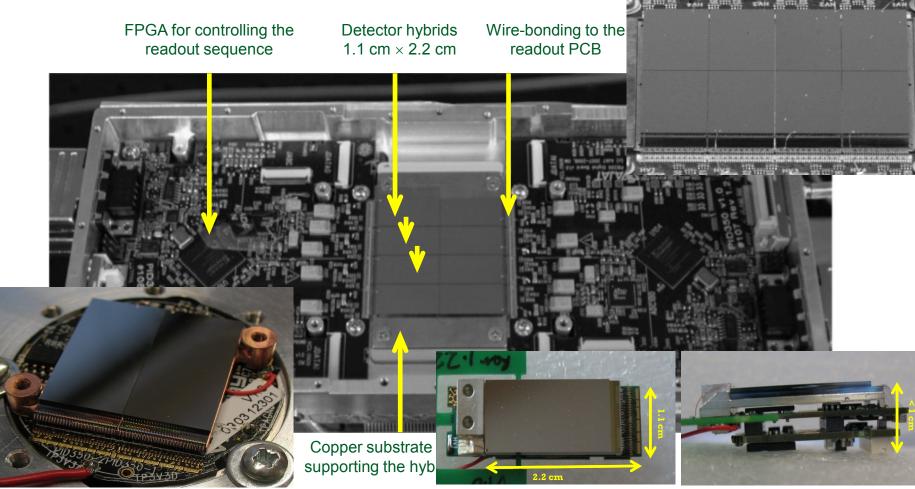
The proposed ERPC detector. (1) CZT crystals of 4.4cm  $\times 4.5$  cm  $\times 2.4$  mm in size, (2) ERPC ASICs, (3) Readout PCBs, (4) indium bumpbonding between CZT detector to the ASIC, (5) wire-bonds between the ASIC and the PCBs and (6) Cathode signal out.



Z. He et al, NIM A380 (1996) 228, NIM A388 (1997) 180.

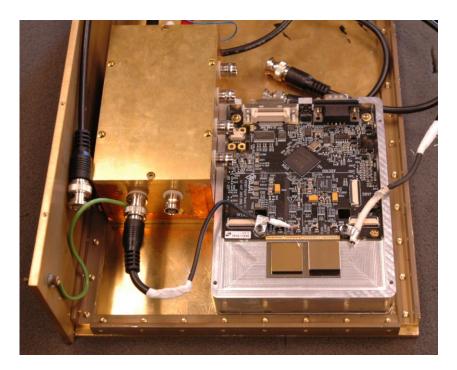


Pixel layout: 350  $\mu$ m x 350  $\mu$ m, containing 2682 electrical components


## **Pixelated CdTe Detectors**



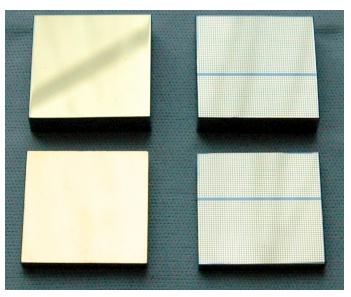
- □ A pixelated CdTe detector of  $11mm \times 22mm \times 1$  or 2 mm in size and having  $32 \times 64~350 \ \mu m \times 350 \ \mu m$  pixels.
- ERPC detectors with 2 mm thick CdTe detectors will be used in the prototype system.
- □ Other pixel sizes 515 um, 700 um read out with the same ASIC?


#### The Prototype ERPC Detectors

#### 2 mm CdTe detector

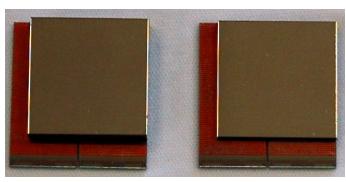


A Compact CdTe Detector (Picture courtesy, Dr. K. Spartiotis, Oy Ajat) (Picture courtesy, Dr. K. Spartiotis)

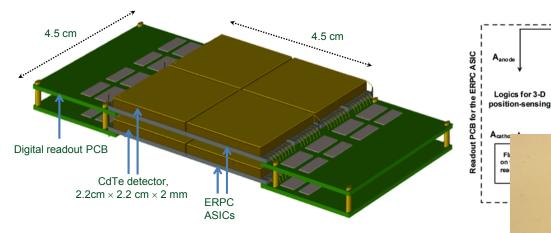

#### CdZnTe Detectors



- We are exploring the use of CZT detectors of 2 mm and 5 mm thicknesses with the ERPC ASIC (fabricated by Creative Electron Ltd.).
- Two different CZT-ASIC bonding techniques (SnBI bump-bonding and Ag/Cu conductive epoxy bonding) are under evaluation.

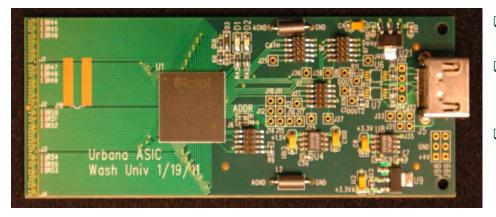

1.9cm×1.9cm×5mm CZT detector, cathode side






2mm thick CZT detector, cathode side

Anode side




#### Next Generation Ultrahigh Resolution CZT/CdTe Detectors



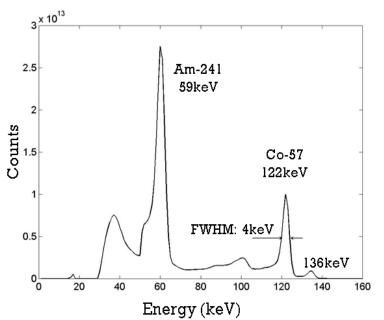
Left: The proposed MRI-compatible ERPC CdTe detector. the cathode-to-anode ratio to derive the depth-of-interaction

#### A New Digital Readout System for the



- High-1000f
- Anode and cathode readout (ERPC ASIC for anode and NCI ASIC for cathode),

ERPC-ASIC


Energy deposition

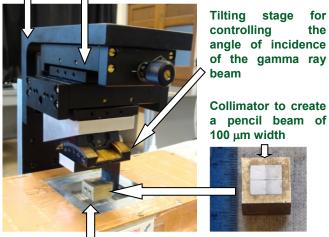
CZT

Detecto

Relatively compact, width of the readout PCB is equal to the width of the CZT/CdTe detectors (4.5 cm), allowing a compact ring geometry.

#### **Energy Resolution**

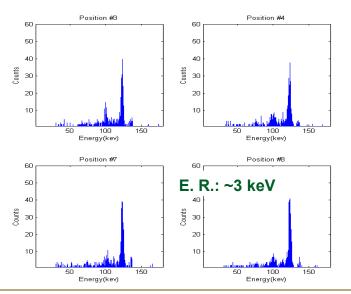



(Upper left) Energy spectrum with events acquired on all 16384 pixels after correcting the channel-by-channel variation of gain and offset.

(Upper right) Experimental setup for illuminating the detector with a fine pencilbeam.

Lower right: energy spectra measured on a single pixel with events at different depths-ofinteraction.

Support structure


Non-magnetic x-y linear stages



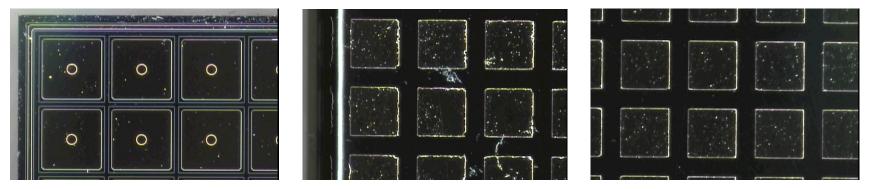
for

the

Detector entrance window

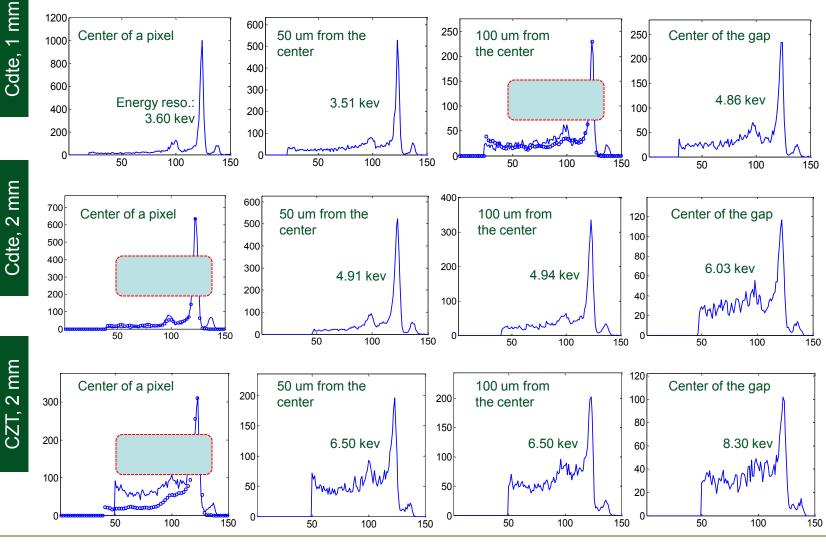


L. J. Meng, TIPP 2011


## Problems of Current Small Pixel CZT Detectors

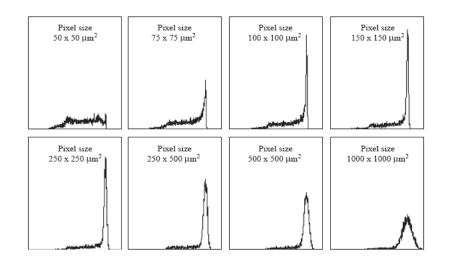
The key problem for further improvement is the degraded charge collection efficiency associated with CZT or CdTe detectors relying on small-pixel effect for single polarity charge sensing.

- □ Energy information collected on the anode pixels is not reliable.
- DOI information acquired with C/A Ratio will not be accurate.
- Timing resolution obtained at anode pixels will be subject to systematic error – therefore limited to several tens of ns – questionable for PET applications.
- DOI information measured by electron drifting time (as currently used in the Michigan system) will be limited by the poorer timing resolution.
- Increased system complexity in readout electronics.


## Limitation on CdZnTe Detector Fabrication

Photos of the pixels on the 2 mm, 5 mm CZT detectors and the 1mm CdTe detectors



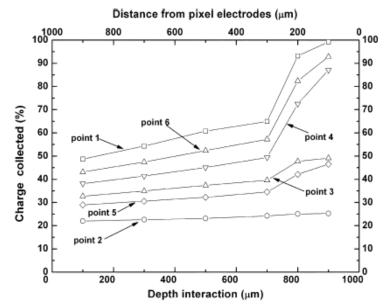

- □ The anode side of the detectors has square pixels of 350 um pitch and the actual pixel contacts are 250 um × 250 um in size (fabricated by Creative Electron Ltd.)..
- □ Each anode pixel has a thin layer of gold (50 nm thickness) in direct contact with the CZT crystal and a second layer of nickel of 100 nm on top of the gold layer.

#### Problem I: Poor Energy Resolution due to Charge Sharing Between Small Pixels



L. J. Meng, TIPP 2011

## Problem I: Poor Energy Resolution due to Charge Sharing Between Small Pixels




A simulated pulse-height spectra with different pixel size. The detector is 0.75mm CdTe irradiated by 60keV gamma rays. (Konstantinos Spartiotis et al, NIM A550, 2005)

Right: Measured charge-collection efficiency on a given pixel.

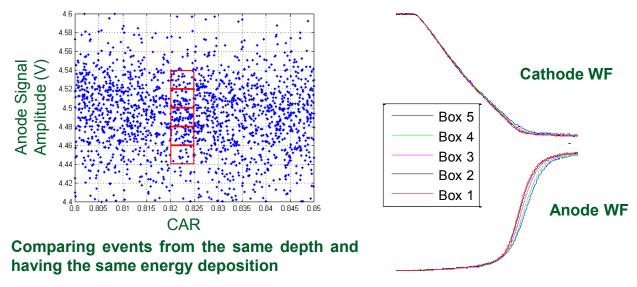
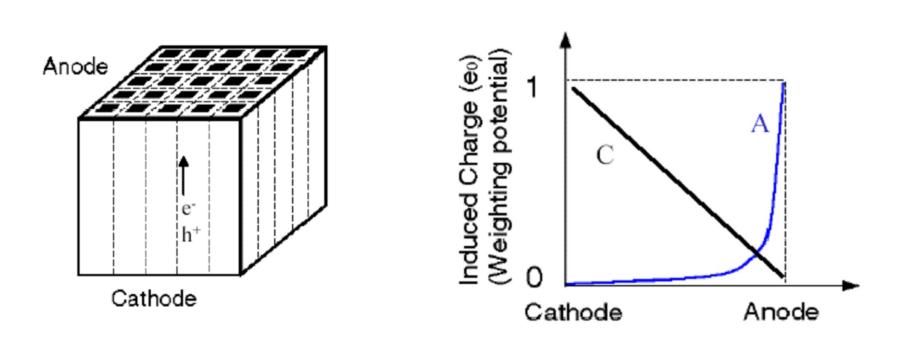



Photo of a CdTe detector used with Medipix2 readout chip. Pixel size:  $45\mu$ m. (Pellegrini at al, NIM A53, pp361, 2005).




# <figure><figure>

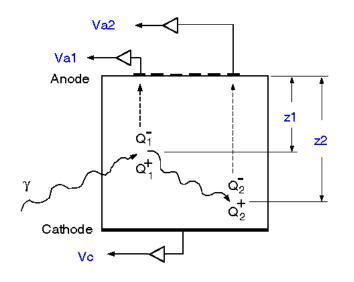
Measured mean waveform from an anode pixel – charge collection time depends on DOI



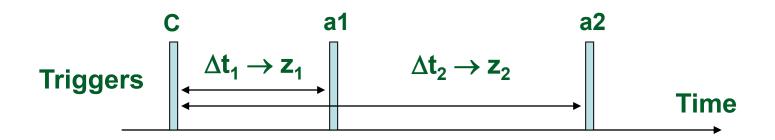
A closer look reveals that even for events with the same DOI, charge collection times could vary ...

# Problem III: Difficulties in Getting DOI



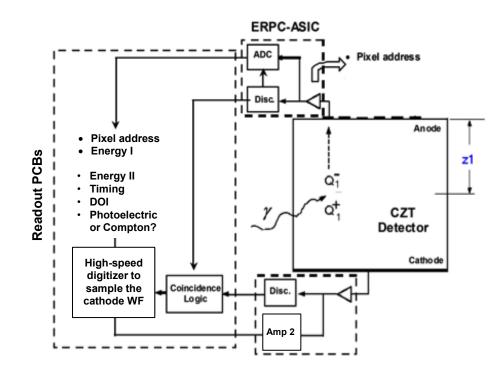

Z. He et al, NIM A380 (1996) 228, NIM A388 (1997) 180.

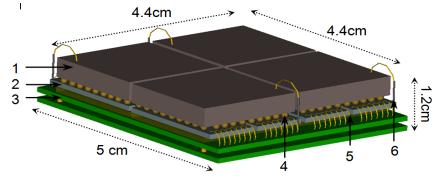
Signal from anode pixel  $\Rightarrow$  No. of electrons collected by the pixel (N) and its lateral position (x, y).


C/A  $\Rightarrow$  Interaction depth (z).

N, x, y, z  $\Rightarrow$  Energy deposition E<sub>0</sub> and interaction location.

# Problem III: Difficulties in Getting DOI

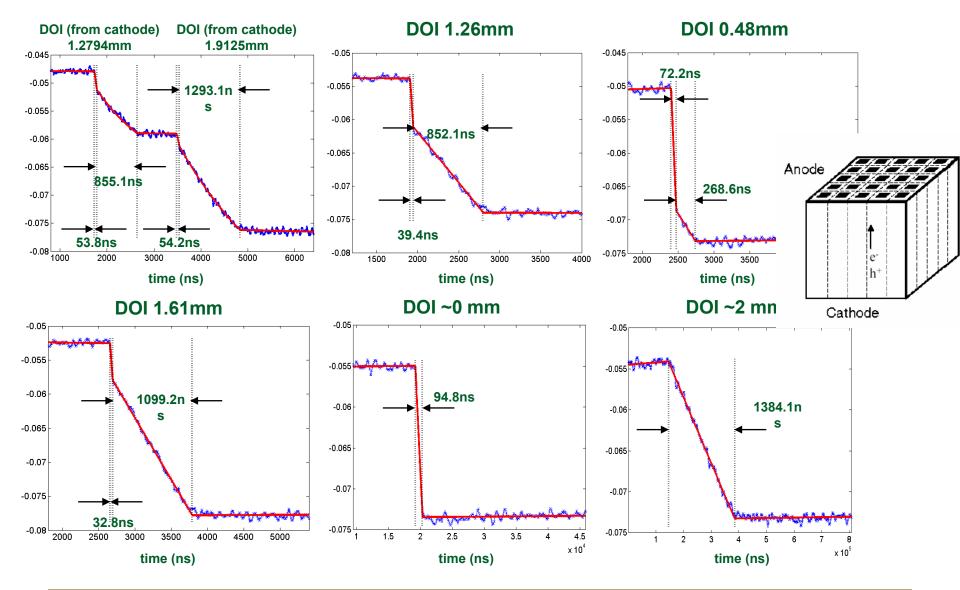




- For multiple interactions, C/A ratio is no longer sufficient for determining interaction sites.
- Extra information is provided by drifting times for each electron cloud.
- The accuracy of determining interaction depth is <0.5mm



3-D Position Sensitive Detectors Developed by Prof. Zhong He

## Small Pixel CZT Detectors with a Hybrid Pixel-Waveform Readout System





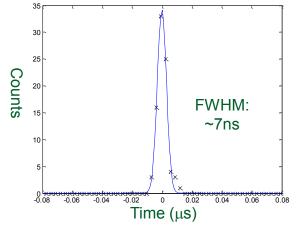

(1) CZT or CdTe crystals of 4.4cm  $\times 4.5$  cm  $\times 1.5$  mm in size, (2) ERPC ASICs, (3) Readout PCBs for both reading out ERPC ASICs and digitizing cathode waveforms, (4) indium bump-bonding between CZT detector to the ASIC, (5) wire-bonds between the ASIC and the PCBs and (6) Cathode signal out.

Fig. 1: Gen-II ERPC detectors with HPWF readout system. Left: Design schematic; **Right**: 3D rendering of the HPWF-ERPC detector design.

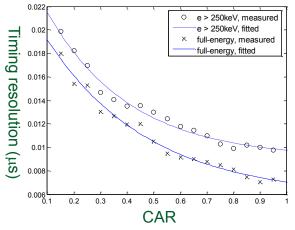
## DOI Measurements with 2 mm Thickness CZT Detectors



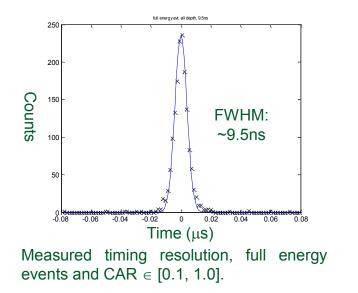
L. J. Meng, TIPP 2011

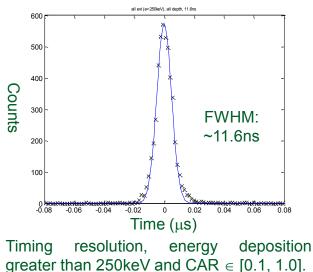

#### **Theoretical Waveform Models**

#### Waveform Models for Use in Timing Estimation


| Waveform<br>Models    | Definition                                                                                                                                                                                                                                                                                                           | No. of Model<br>Parameters                                                                                                                     |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Double<br>Exponential | $\overline{w}(t) = \begin{cases} \lambda_1 \cdot t + \lambda_2, & t < t_0 \\ (\lambda_1 \cdot t + \lambda_2) + \lambda_3 \cdot \lambda_4 \cdot \left[ 1 - \exp(-\frac{t - t_0}{\lambda_4}) \right] & t \ge t_0 \\ + \lambda_5 \cdot \lambda_6 \cdot \left[ 1 - \exp(-\frac{t - t_0}{\lambda_6}) \right] \end{cases}$ | $egin{array}{c} 7 \ \mathbf{(}\lambda_1,\lambda_2,\mathbf{t}_0,\lambda_3,\lambda_4,\lambda_5 \ \mathbf{and}\;\lambda_6 \mathbf{)} \end{array}$ |
| Single<br>Exponential | $\overline{w}(t) = \begin{cases} \lambda_1 \cdot t + \lambda_2, & t < t_0 \\ (\lambda_1 \cdot t + \lambda_2) + \lambda_3 \cdot \lambda_4 \cdot \left[ 1 - \exp(-\frac{t - t_0}{\lambda_4}) \right] & t \ge t_0 \end{cases}$                                                                                          | 5 ( $\lambda_1$ , $\lambda_2$ , t <sub>0</sub> , $\lambda_3$ and $\lambda_4$ )                                                                 |
| Linear                | $\overline{w}(t) = \begin{cases} \lambda_1 \cdot t + \lambda_2, & t < t_0 \\ \lambda_3 \cdot t + \left[ (\lambda_1 - \lambda_3) \cdot t_0 + \lambda_2 \right] & t \ge t_0 \end{cases}$                                                                                                                               | $\begin{array}{c} 4 \\ \textbf{(}\lambda_1\textbf{,}\lambda_2\textbf{,}\textbf{t}_0 \textbf{and}\lambda_3\textbf{)} \end{array}$               |
| "Optimal"             | Derived by averaging multiple observed<br>waveforms. Needed for all potential<br>interaction sites.                                                                                                                                                                                                                  |                                                                                                                                                |

(Meng, NIM, 2005).


#### **Results II: Measured Timing Resolution**




Measured timing resolution with full energy events close to the cathode (CAR of  $\sim$ 0.9).



Timing resolution as a function of CAR with full energy events and events having energy deposition >250keV (circles).





#### **Results IV: Predicted Timing Resolution**

#### Measured and estimated timing resolution

| Timing Resolution                                          | CZT, 10 mm<br>thickness | CZT, 5 mm           | CZT, 2 mm  |
|------------------------------------------------------------|-------------------------|---------------------|------------|
| Trig. on cathode<br>(2.25cm², V <sub>Bias</sub> : 140V/mm) | 30 ns <sup>1</sup>      | ~20 ns <sup>2</sup> | 8-10 ns    |
| Trig. on anode<br>(1×1mm², V <sub>Bias</sub> : 140V/mm)    | 40 ns                   |                     |            |
| WF fitting<br>(V <sub>Bias</sub> : 140V/mm)                | 10 ns                   | _                   | _          |
| WF fitting,<br>(V <sub>Bias</sub> : 500V/mm)               | ~ 7 ns <sup>3</sup>     | ~ 3 ns              | ~ 2 ns     |
| WF fitting,<br>(V <sub>Bias</sub> : 500V/mm)               | ~ 4 ns                  | ~ 2 ns              | Sub-ns (?) |

- 1. Experimentally measured.
- 2. Simply scaled with increasing electric field strength.
- 3. Simulated using the analytical waveform model.

# Summary

- We have developed a relatively generic detector architecture for small pixel CZT or CdTe detectors.
- We have produced and experimentally evaluated CdTe and CZT detectors of 1 mm to 5 mm thicknesses readout with the ERPC readout system. Both 1 mm and 2 mm thickness detectors have offered reasonable imaging performance for SPECT applications.
- ❑ An improved detector pixelation process is needed for CZT detectors to improve the charge-collection process and therefore their spectroscopy performance.

To further improve the performance for future small-pixel CZT or CdTe detectors, we are currently developing a readout circuitry that utilizes both the anode signals and cathode signal waveforms.

# Many thanks and questions?