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Motivation of Our Detector Development Effort

One CZT/CdTe detector architecture that fits many
gamma ray applications – such as SPECT and PET for

medical imaging, Coded aperture and Compton cameras for

security and astrophysics applications?

We would like to have a detector that has

 Excellent spatial resolution in 3-D (a 100-250μm),

 Excellent timing resolution (a few ns),

 Excellent energy resolution (a few percent),

 Adequate count rate capability (250k per cm2),

 Being able to deal with multiple interaction events.

All across a wide energy range 30 keV - several MeV
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A High-Resolution MRI-Compatible SPECT System

Readout PCB

MRI Scanner Bore

Rotary motor 

RF coil

CdTe Detector

Collimator

Non-magnetic SPECT 

system chassis

Patient bed

1.5 m long arm to allow a  

remotely mounted motor

 We are developing a MRI-compatible SPECT system with four

heads installed on a rotational gantry.

 Two key objectives: (a) demonstrate the capability of achieving

an sub-500 μm SPECT resolution inside MRI scanner (b)

provide a flexible platform for testing different detector and

system designs Left: A 3-D whole-body image of a rat acquired with the 3

T Allegra scanner. Right: T2* relaxation of the tissues.

The images were obtained with a multiecho fast low

angle shot (FLASH) sequence written by Professor Brad

Sutton of UIUC. It resulted in 0.5 mm isotropic resolution

from an 8 minutes whole body scan.

The Siemens Allegra 3 T MRI scanner at BIC

that will be used in the combined SPECT/MRI

System.

NCI, R21/R33CA004940, R21CA135736-01A1.
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A Sub-500 m Resolution PET Insert

A (A) Geometry of a potential 4-panel VP-PET insert

device inside an animal PET scanner.

(B) A potential implementation of the detector

technology proposed in this work.

(C) A prototype PET detector developed for the PET

application.

B

VP-PET insert

Animal

PET scanner

animal bed

B

C

DOE, Office of Biological and Environmental Research 

(DE-FG2-08ER6481). PI Y. C. Tai, WashU
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Focal Plane Detector for the EXIST Mission

IRT (1.1m, -30˚C), 

• 0.3-1 μm (CCD), 

• 0.9-2.2 μm (NIRSPEC).

Launch:  Altas V-401 into LEO.

SXI (0.1-10 keV):

• 950 cm2 @ 1.5 keV. 

HET (5-600 keV):  

• Tungsten mask (7.7 m2), 

• CZT detectors (4.5 m2),

• BGO rear shield (4.5 m2).

Supported by NASA, Grant # 

08-APRA08-0122
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Energy-Resolved Photon Counting Detector –

Design Concept and Considerations

Basic design target: generic, high performance and flexible.

 Hybrid photon detector concept with highly pixelated (pixel size: 350 m) CdTe or

CZT bump-bonded to 2-D readout ASIC – compact, high resolution.

 ADC on each channel – all digital output, amplitude, time stamp, pixel address for

each hit.

 Flexible sparse logic – allowing signals from adjacent pixels to be summed together.

The proposed ERPC detector. (1) CZT crystals of 4.4cm  4.5 cm  2-4

mm in size, (2) ERPC ASICs, (3) Readout PCBs, (4) indium bump-

bonding between CZT detector to the ASIC, (5) wire-bonds between the

ASIC and the PCBs and (6) Cathode signal out.
Z. He et al, NIM A380 (1996) 228, NIM A388 (1997) 180.
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Pixelated CdTe Detectors

 A pixelated CdTe detector of 11mm  22mm  1 or 2 mm in size

and having 3264 350 m  350 m pixels.

 ERPC detectors with 2 mm thick CdTe detectors will be used in

the prototype system.

 Other pixel sizes – 515 um, 700 um read out with the same ASIC?
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The Prototype ERPC Detectors

Detector hybrids

1.1 cm  2.2 cm

Wire-bonding to the 

readout PCB

FPGA for controlling the 

readout sequence

Copper substrate for 

supporting the hybrids

2 mm CdTe detector

A Compact CdTe Detector 

(Picture courtesy, Dr. K. Spartiotis, Oy Ajat)

(Picture courtesy, Dr. K. Spartiotis)
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CdZnTe Detectors

 We are exploring the use of CZT detectors of 2

mm and 5 mm thicknesses with the ERPC

ASIC (fabricated by Creative Electron Ltd.).

 Two different CZT-ASIC bonding techniques

(SnBI bump-bonding and Ag/Cu conductive

epoxy bonding) are under evaluation.

1.9cm1.9cm5mm CZT 

detector, cathode side Anode side

2mm thick CZT detector, 

cathode side

Anode side
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Next Generation Ultrahigh Resolution CZT/CdTe Detectors

 High-speed readout; eSATA interface,

1000fps;

 Anode and cathode readout (ERPC

ASIC for anode and NCI ASIC for

cathode),

 Relatively compact, width of the

readout PCB is equal to the width of the

CZT/CdTe detectors (4.5 cm), allowing

a compact ring geometry.

A New Digital Readout System for the SPECT/MRI Project

Left: The proposed MRI-compatible ERPC CdTe detector. Right: Schematic of using

the cathode-to-anode ratio to derive the depth-of-interaction information.

CdTe detector,

2.2cm  2.2 cm  2 mm 

Digital readout PCB

ERPC 

ASICs

4.5 cm4.5 cm
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Energy Resolution

(Upper left) Energy spectrum with events

acquired on all 16384 pixels after correcting

the channel-by-channel variation of gain and

offset.

(Upper right) Experimental setup for

illuminating the detector with a fine pencil-

beam.

Lower right: energy spectra measured on a

single pixel with events at different depths-of-

interaction.

E. R.: ~3 keV

Non-magnetic x-y

linear stages

Support 

structure  

Tilting stage for

controlling the

angle of incidence

of the gamma ray

beam

Collimator to create

a pencil beam of

100 m width

Detector entrance window
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Problems of Current Small Pixel CZT Detectors 

The key problem for further improvement is the degraded charge

collection efficiency associated with CZT or CdTe detectors relying on

small-pixel effect for single polarity charge sensing.

 Energy information collected on the anode pixels is not reliable.

 DOI information acquired with C/A Ratio will not be accurate.

 Timing resolution obtained at anode pixels will be subject to

systematic error – therefore limited to several tens of ns –

questionable for PET applications.

 DOI information measured by electron drifting time (as currently

used in the Michigan system) will be limited by the poorer timing

resolution.

 Increased system complexity in readout electronics.
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Limitation on CdZnTe Detector Fabrication

Photos of the pixels on the 2 mm, 5 mm CZT detectors and the 1mm CdTe detectors 

 The anode side of the detectors has square pixels of 350 um pitch and the actual

pixel contacts are 250 um  250 um in size (fabricated by Creative Electron Ltd.)..

 Each anode pixel has a thin layer of gold (50 nm thickness) in direct contact with the

CZT crystal and a second layer of nickel of 100 nm on top of the gold layer.
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Problem I: Poor Energy Resolution due to 

Charge Sharing Between Small Pixels
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A simulated pulse-height spectra with different

pixel size. The detector is 0.75mm CdTe

irradiated by 60keV gamma rays. (Konstantinos

Spartiotis et al, NIM A550, 2005)

Photo of a CdTe detector used with Medipix2

readout chip. Pixel size: 45µm. (Pellegrini at al,

NIM A53, pp361, 2005).

Right: Measured charge-collection efficiency

on a given pixel.

Problem I: Poor Energy Resolution due to 

Charge Sharing Between Small Pixels
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A closer look reveals

that even for events

with the same DOI,

charge collection times

could vary …

Problem II: Poor Timing Resolution

Analogue Triggering on Anode Signals
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Problem III: Difficulties in Getting DOI

Signal from anode pixel  No. of electrons collected by the pixel (N)

and its lateral position (x, y).

C/A  Interaction depth (z).

N, x, y, z  Energy deposition E0 and interaction location.

Z. He et al, NIM A380 (1996) 228, NIM A388 (1997) 180.
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3-D Position Sensitive Detectors Developed by Prof. Zhong He

Time

t2  z2

C a1 a2

t1  z1Triggers

• For multiple interactions, C/A

ratio is no longer sufficient for

determining interaction sites.

• Extra information is provided by

drifting times for each electron

cloud.

• The accuracy of determining

interaction depth is <0.5mm
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Small Pixel CZT Detectors with a Hybrid Pixel-Waveform 

Readout System 

Amp 2

High-speed 
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• Timing 

• DOI

• Photoelectric 

or Compton?
(1) CZT or CdTe crystals of 4.4cm  4.5 cm  1-5

mm in size, (2) ERPC ASICs, (3) Readout PCBs

for both reading out ERPC ASICs and digitizing

cathode waveforms, (4) indium bump-bonding

between CZT detector to the ASIC, (5) wire-bonds

between the ASIC and the PCBs and (6) Cathode

signal out.

Fig. 1: Gen-II ERPC detectors with HPWF readout system. Left: Design

schematic; Right: 3D rendering of the HPWF-ERPC detector design.
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DOI Measurements with 2 mm Thickness CZT Detectors 
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Theoretical Waveform Models

(Meng, NIM, 2005).
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Results II: Measured Timing Resolution

Measured timing resolution with full energy

events close to the cathode (CAR of ~0.9).
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Results IV: Predicted Timing Resolution

Timing Resolution
CZT, 10 mm 

thickness
CZT, 5 mm CZT, 2 mm

Trig. on cathode 

(2.25cm2, VBias: 140V/mm)
30 ns 1 ~20 ns 2 8-10 ns

Trig. on anode 

(11mm2, VBias: 140V/mm)
40 ns  

WF fitting 

(VBias: 140V/mm)
10 ns  

WF fitting, 

(VBias : 500V/mm)
~ 7 ns 3 ~ 3 ns ~ 2 ns

WF fitting, 

(VBias : 500V/mm)
~ 4 ns ~ 2 ns Sub-ns (?)

Measured and estimated timing resolution

1. Experimentally measured. 

2. Simply scaled with increasing electric field strength.

3. Simulated using the analytical waveform model. 
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Summary

 We have developed a relatively generic detector architecture for small pixel

CZT or CdTe detectors.

 We have produced and experimentally evaluated CdTe and CZT detectors

of 1 mm to 5 mm thicknesses readout with the ERPC readout system. Both

1 mm and 2 mm thickness detectors have offered reasonable imaging

performance for SPECT applications.

 An improved detector pixelation process is needed for CZT detectors to

improve the charge-collection process and therefore their spectroscopy

performance.

To further improve the performance for future small-pixel CZT or CdTe

detectors, we are currently developing a readout circuitry that utilizes both the

anode signals and cathode signal waveforms.
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Many thanks and questions?
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