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The            AHCAL Prototype

ILD @ ILC
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Analogue Hadronic Calorimeter Prototype:
- highly granular scintillator-steel sandwich
- 3x3 cm2 cell size, 7608 Channels, SiPM readout

• CALICE: calorimeters for precision measurements at future lepton collider,
optimized for Particle Flow - aim is a jet energy resolution of: 

σE/E ≈ 3− 4%
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The           Test Beam Program

2006 & 2007:  e±, μ and hadron beams 8-180 GeV
                       acquired at CERN SPS H6 test beam

2008 & 2009: extending low energy range from
                       8 down to 1 GeV at FNAL MTBF

2010 & 2011: active AHCAL layers moved back
                      to CERN:   tungsten absorber
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Studies shown base
on 2007 CERN data

ECAL HCAL TCMT
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Monte Carlo Simulation
• Simulation: necessary for design of real detector, hadronic shower simulation still in 

development, validation necessary!

• Mokka: Geant 4 application able to simulate full ILD detector as well as test beam setup

• Geant 4 simulation is organized in physics lists combining several physics models 
valid at different energy ranges. Many physics list tested - here only four presented.

• All Events have been simulated with Geant 4.9.3. For simulations with the experimental 
CHIPS physics list the patched version Geant 4.9.3.p01 was used.
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Models applied for π at different energies:

CHIPS (patched version Geant 4.9.3.p01)

QGSP_BERT
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Energy Scale
• First thing to look at to validate calibration and simulations: Calorimeter Response
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Energy points presented:

• For QGSP_BERT, FTF_BIC and LHEP the transition between models is visible.

• CHIPS looks promising - no transition and no energy dependence.
Overestimation of deposited energy is expected due to incorrect simulation of low 
energy neutrons.

CALICE preliminary
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First hadronic Interaction

• High granularity allows to find position of first hadronic interaction

• Primary Track Finder by M.Chadeeva: agreement of +/-1 layer for 74% of all events

• Allows shower profiles relative to first interaction point
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Imaging calorimeter: 20 GeV π shower data

beam
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Nuclear Interaction length

• Distribution of first interaction point: exponential behavior

• Fitting an exponential (binned-likelihood) allows to extract interaction length for pions

• This is a test of the cross sections implemented in Geant4

• FTF_BIC agrees with DATA, for QGSP_BERT transition region is visible - agreement 
above 20 GeV

• LHEP & CHIPs have both different lambda (expected due to different cross sections)
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CALICE preliminary CALICE preliminary

black markers = DATA

filled histogram= MC
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 Longitudinal profiles
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• Profiles relative to first hard interaction point

• Simulation allows to disentangle deposited energy into 
contributions by electrons, positrons, protons and mesons

LEP QGSPBERT

CALICE preliminary

first int.

CALICE preliminary

BIC
25 GeV

FTF_BIC QGSP_BERT

first int.

25 GeV
FTF
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 Mean Shower Depth
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CALICE preliminary
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• Fritiof and QGS models predict too small shower depth

• CHIPS shower center of gravity deeper than in data
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Mean Shower Radius

• All models predict too small mean shower radius

• CHIPS model fits best to data
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Track segments

• Track multiplicity influenced by shower 
topology: number of secondaries 
created

• Number of tracks provided by LHEP & 
QGS_BIC is far too low

• Other lists quite close to each other, 
from which QGSP is closest to data, 
FTF_BIC furthest away
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“Tracking calorimetry”

! Can identify shower start with 
good precision.
! Exponential distribution of start 
points in the AHCAL
! !!infer effective interaction 
length.
! Serves as a cross-section check 
on Fe in GEANT4.
! All models OK, apart from LHEP.
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(a) track multiplicity distribution for 25GeV - normalized to
1.

Energy [GeV]
10 20 30 40 50 60 70 80

M
C

/D
a
ta

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3 10 20 30 40 50 60 70 80
M

e
a
n
 T

ra
ck

 M
u
lti

p
lic

ity
 /
 e

ve
n
t

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

 data_rec_v0408-
π

 LHEP-
π

 QGS_BIC-
π

 QGSP_BERT_TRV-
π

 QGSP_BERT-
π

 FTF_BIC-
π

 FTFP_BERT-
π

CALICE preliminary

(b) Average track multiplicity for all energies.

Figure 22: Data - Monte Carlo comparison: track multiplicity for different energies. The grey area
gives the size of the statistical error for LHEP.

5. Summary

A simple tracking algorithm has been developed that is capable of identifying tracks created by
minimum ionizing particles in hadronic showers. The algorithm relies on isolated hits and works
on a layer-by-layer basis. It intrinsically limits the angle of tracks reconstructed. The energy de-
position of inclined tracks is corrected. In a second step the intrinsic track properties track angle,
length, multiplicity and gap fraction are used as parameters in a comparison between testbeam
data and simulations created with various physics lists. For the given data the four physics lists
QGSP_BERT, QGSP_BERT_TRV, FTF_BIC and FTFP_BERT all give results that are close to-
gether and comparable to testbeam data, with a slight advantage in favor of the QGSP_BERT(_TRV)
lists. The energy distribution of hits on tracks found with this algorithm have also been successfully
used in calibration studies [3].
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Imaging calorimeter: picture of a π shower
CALICE preliminary
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Pandora PFA Performance
• Use Pandora PFA with test beam data mapped to ILD geometry

• Overlay two pion showers, assume one to be neutral and the other to be charged

• Investigate PFA performance varying the distance and energy of the two showers
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Energy: 10 GeV  neutral, 10 GeV charged
d = 5 cm d = 30 cm

Oleg Markin, ITEP Moscow
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Recovered  energy - Measured  energy [GeV]
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Pandora PFA Performance
• Use Pandora PFA with test beam data mapped to ILD geometry

• Overlay two pion showers, assume one to be neutral and the other to be charged

• Investigate PFA performance varying the distance and energy of the two showers
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Energy: 10 GeV  neutral, 30 GeV charged
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Pandora PFA Performance
• Use Pandora PFA with test beam data mapped to ILD geometry

• Overlay two pion showers, assume one to be neutral and the other to be charged

• Investigate PFA performance varying the distance and energy of the two showers
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Beam Energy [GeV]
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Outlook: EM Fraction

• EM component = Energy from π0  and η decaying into γ      → available in MC

• Simulations show different EM fraction        → validation against DATA interesting

• Deep Analysis: clustering algorithm initially developed by V. Morgunov
can be tuned to find EM-like clustering   → would be also applicable for DATA

• Not ready yet: cluster identification still energy and physics lists dependent has to be 
improved further.
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Summary

• The CALICE collaboration built a highly granular analogue hadron calorimeter

• It allows precise measurements of hadron showers
as well as validation of MC models on a very precise level

• Imaging calorimeter:

- measure track multiplicity

- determine first interaction point

- PFA validation with test beam data

- possibly measure EM component in data (in progress)
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• Conclusion on physics lists:

- LHEP: outdated, shown for reference since it is still used as stop gap

- String + Cascade models: give reasonable description, but room for improvement

- CHIPS model: promising, but still experimental - patched version 4.9.3.p01 tested
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Energy Resolution

• Resolution without any compensation: 

• High granularity allows software compensation approach - several methods studied

• Basic idea is, that EM-components of shower are denser
→ use an event-wise weighting of hits to energy density
→ typically achieve a relative improvement of 10-20%

• Geant4 physics lists model this reasonable well, but not perfectly
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