Development of two-dimensional

gaseous detector

 for energy-selective radiography
Shoji Uno (KEK-DTP)
 TIPP2011 Chicago, USA June 10, 2011

$>$ Introduction
$>$ GEM
$>$ Application to Neutron Detector
$>$ Detector system
$>$ Performance studies with pulse neutron beam
$>$ Basic test
$>$ Energy selective neutron radiography
> Summary

GEM (Gas Electron Multiplier)

Double side flexible printed circuit board
Electric field

Hole diameter $\quad 70 \mu \mathrm{~m}$
Hole pitch $\quad 140 \mu \mathrm{~m}$

Thickness
Cu thickness
$50 \mu \mathrm{~m}$
$5 \mu \mathrm{~m}$

Developed by F.Sauli (CERN) in 1997. NIMA 386(1997)531

Application to Neutron Detector

$$
\begin{gathered}
{ }^{10} \mathrm{~B}+\mathrm{n} \rightarrow{ }^{7} \mathrm{Li}+\alpha+2.792 \mathrm{MeV} 3840 \mathrm{~b} \\
{ }^{7} \mathrm{Li}^{*}+\alpha+2.310 \mathrm{MeV}
\end{gathered}
$$

- Expensive ${ }^{3} \mathrm{He}$ Gas is not necessary.
- No pressure vessel
- Free readout pattern
- High resolution
- Position and Time
- Insensitive against g-ray
- Capability against high counting rate

Chamber structure

$\mathrm{Ar} / \mathrm{CO}_{2}=70: 30$

Thickness of Boron-10 : $4.4 \mu \mathrm{~m}$
$2.0 \mu \mathrm{~m}+0.6 \mu \mathrm{~m} \times 4$

150 V (75V)

240 V 150 V 240 V 150 V 400 V 440 V

370 V

800V
$\mathrm{X}(120)+\mathrm{Y}(120)$ strips
0.8 mm pitch

Block diagram for readout board

Present Detector System

Compact and Portable System T.Uchida et. al., "Prototype of a Compact Imaging System for GEM detectors," was published on IEEE TNS 55(2008)2698.

- I/F
- One HV cable
- Three LV cables
- One Ethernet cable
- Electronics
- 8 ASIC chips + 1 FPGA
- FE2009 ASIC : KEK-DTP
- Data transfer and Control through Ethernet
- SiTCP by T. Uchida (KEK)
- Using Note-PC

0
Input Rate (MHz)

Several test experiments

 at the pulsed neutron sources in J-PARC MLF (BL21, BL10), Hokkaido University and RAL ISIS (ROTAX)
Experimental setup

A neutron irradiation test was performed at BL21 in MLF of J-PARC.

The Plateau curve as a function of supplied high voltage

Data samples

The beam profile and its TOF distribution
$\mathrm{L}=18789 \mathrm{~mm} \sim 18.8 \mathrm{~m}$
L: distance from the source to the detector

An image of a cadmium slit and its TOF distribution (mm)

This image is produced with a wavelength cut.

Our system can obtain a 2D image and its TOF at the same time.

Position resolution at ROTAX in ISIS of RAL

Capability to reject gamma ray

at BL21 in J-PARC

- Gamma ray can be rejected further using pulse width (pulse height) information, if necessary.
Gamma ray

Energy Selective Neutron Radiography

Resonance absorption imaging

Co試料（9．29－11．8 $\mu \mathrm{s}$ ）

Na 試料（14．5－15．5 $\mu \mathrm{s}$ ）

One more demonstration

Imaging data with around 450μ sec ToF

Energy Selective Neutron Radiography

Extinction function for microstructure

Primary extinction (re-diffraction) inside a crystallite (a mosaic block)

Non re-diffracted neutron

Visualized microstructure parameter
S : Crystallite size along the beam direction
$E_{h k l}\left(\lambda, F_{h k l}\right)=E_{B} \sin ^{2} \theta_{h k l}+E_{L} \cos ^{2} \theta_{\text {hkl }}$
$E_{B}=\frac{1}{\sqrt{1+x}}$ Bragg component \quad Laue component
$E_{L}=1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{5 x^{3}}{48}+\cdots \quad$ for $\quad x \leq 1$
$E_{L}=\sqrt{\frac{2}{\pi x}}\left[1-\frac{1}{8 x}-\frac{3}{128 x^{2}}-\frac{15}{1024 x^{3}}-\cdots\right] \quad$ for $\quad x>1$
$x=S\left(\frac{\lambda F_{h k l}}{V_{0}}\right)^{2}$
O: Refinement parameter

Nb plate with welding at ROTAX

Bragg edge at welding region

Imaging for bended iron plates at LINAC in Hokkaido University

Sample

90° Bending
and Re-flattening
+Reference
(without bending)

70 cm
Flight tube

Results

Two dimensional imaging of crystallite size in the bended iron plates can be done clearly.
Visualization of microstructure for heavy material can be performed with the gaseous neutron detector.

Summary

- Neutron detector with Boron coated GEM was constructed.
- Boron converter
- Gas amplification at GEM
- Two-dimensional readout with X-Y strips
- High speed compact readout system
- Test experiments were performed at several pulsed neutron sources.
- Good position resolution without distortion
- Two dimensional position and flight time can be obtained simultaneously.
- Gamma ray can be rejected further using the pulse width (pulse height).
- Good performance for the energy selective radiography is demonstrated.

Backup

Thickness of Boron and Number of B-GEM foils

Using ${ }^{252} \mathrm{Cf}$ radiation source

Saturation was observed in thicker Boron layer.

Number of sheets of B-GEM
Higher efficiency could be obtained for more B-GEM foils.

Chamber Structure for Beam Test

Thickness of Boron Layer : $1.2 \mu \mathrm{~m}$ In total $1.2 \mu \mathrm{mx} 9=10.8 \mu \mathrm{~m}$

Test experiment at JRR3 research reactor in JAEA

Detection Efficiency

- $1 \mathrm{~mm}^{\varphi}$ Pin Hole
- ${ }^{3} \mathrm{He}$ Counter with 1 inch 10 atm
- 61405 counts/100sec
- Boron-GEM Foil
- 18599 counts/100sec
- Detection Efficiency
- 30% at $2.2 \AA$
- with 4 GEM foils
- Boron-10 : $1.2 \mu \mathrm{~m}^{\mathrm{t}}$
$\rightarrow 2.4 \mu \mathrm{~m}^{\mathrm{t}}$ per one GEM foil

Two Dimensional Image

Position Resolution

$0.5 \mathrm{~mm}^{\varphi}$ Pine Hole

Large angle scattering Single NaCl

Sample test

Small angle scattering Hypresica $\left(\mathrm{SiO}_{2}\right)$

Position resolution

The $\mathrm{B}_{4} \mathrm{C}$ slit ($35 \mathrm{~mm} \times 35 \mathrm{~mm}$) was put in front of the GEM.

To compensate the beam profile, the data with the slit is divided by the beam profile data.

In the histogram of the slope $(=\Delta \mathrm{Z} / \Delta \mathrm{X})$, a sharp peak appears on the edge of the $\mathrm{B}_{4} \mathrm{C}$ slit.

In order to estimate position resolution, the sharp peak is fitted by a gauss function.

The position resolution; $\sim 1.3 \mathrm{~mm}$ (FWHM)
The correction of the beam divergence is not performed yet.
TIPP09 Mar. 142009 @Tsukuba, Japan

$\Delta \mathrm{Z} / \Delta \mathrm{X}$ is obtained by subtracting the one from the adjacent one. 15

Uniformity (Neutron sensitivity, Imaging)

$1 \mathrm{~mm} \phi, 4.8 \mathrm{~mm}$ pitch
A cadmium slit ($1 \mathrm{~mm} \phi, 4.8 \mathrm{~mm}$ pitch) in front of the GEM.

To compensate the beam profile, the data with the slit is divided by the beam profile data.

the projection data is fitted by a gauss function.

To estimate the uniformity of the neutron sensitivity, the peak area is used.
The peak area: $1.73 \pm 0.30(3 \sigma)$
The dispersion of the neutron sensitivity is estimated at within 17%.
To estimate the distortion of the 2D image, the distance between the peaks is used.
The distance between the peaks: $4.88 \pm 0.10 \mathrm{~mm}$
The distortion of the 2D image is very small.
TIPP09 Mar. $142009 @$ Tsukuba, Japan

Fill the peak area

Fill the distance between two peaks

GEM Foil \& Test Chamber

Standard GEM Foil without Boron coating

Hole diameter	$70 \mu \mathrm{~m}$
Hole pitch	$140 \mu \mathrm{~m}$
Thickness	$50 \mu \mathrm{~m}$
Cu thickness	$5 \mu \mathrm{~m}$

Simulation study

No. of GEM foils

Se-Hwan Park et. al., IEEE NS52(2005)1689
$\sim 32 \%$ X0.77 $=\sim 25 \%$
0.77 : Fraction of Cu surface on GEM

Principle of neutron detection

Neutrons are det $\left.{ }^{\left({ }^{10}\right.}{ }^{10} \mathrm{~B}, \alpha\right)^{7} \mathrm{Li}$ reaction
Neutrons are detected by $n\left({ }^{10} \mathrm{~B}, \alpha\right)^{7} \mathrm{Li}$ reaction.
In order to optimize our detector design, ${ }_{5}^{10} B+{ }_{0}^{1} n \rightarrow\left\{\begin{array}{l}{ }_{3}^{7} L i+{ }_{2}^{4} \alpha+2.792 \mathrm{MeV} \\ { }_{3}^{7} L i^{*}+{ }_{2}^{4} \alpha+2.310 \mathrm{MeV}\end{array}\right.$ we performed a GEANT4-based simulation. $\quad{ }_{3}^{7} L i^{*} \rightarrow{ }_{3}^{7} L i+0.48 \mathrm{MeV}$ ($\%$)

The GEANT4-based simulation

- $1.8 \AA$ thermal neutrons shot into the detector at the normal incident.
- An event depositing energy in the gas is defined as a hit.

The neutron sensitivity as a function of ${ }^{10} \mathrm{~B}$ thickness

- The neutron sensitivity reaches its maximum around $3 \mu \mathrm{~m}$.
- Over the thickness, charged particles (α or ${ }^{7} \mathrm{Li}$) can't enter into the gas volume.
Approximately 0.1% neutron sensitivity achieved by a $0.02 \mu \mathrm{~m}{ }^{10} \mathrm{~B}$ layer.

Transmission Spectrum for Bended Iron

Shapes of Bragg-edge are analyzed in a RITS code, which is developed by H. Sato.

Crystallite size bin by bin

