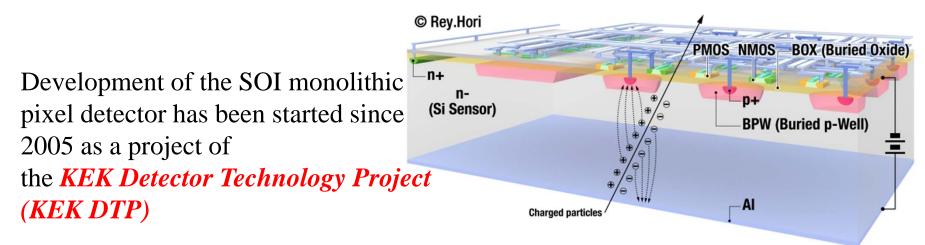
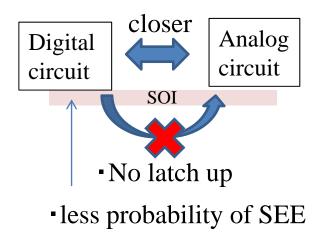
Recent progress of the pixel detectors R&D based on the SOI technology

Toshinobu Miyoshi (KEK IPNS)


Co-Authors:

- Y. Arai, Y. Fujita, R. Ichimiya, Y. Ikegami, Y. Ikemoto, T. Kohriki,
- K. Tauchi, T. Tsuboyama, Y. Unno (KEK)
- K. Hara, K. Shinsho (Univ. of Tsukuba)
- H. Kasai, M. Okihara (OKI SEMICONDUCTOR MIYAGI Co., Ltd.)
- H. Katsurayama, Y. Ono, Y. Onuki (Tohoku Univ.)
- K. Hanagaki (Osaka Univ.)
- A. Takeda (SOUKENDAI)

Outline


- 1. Overview
- 2. SOI pixel detectors
- 3. Progress & detector performance
- 4. Current issue
- 5. Conclusion & Schedule

Overview of the SOI monolithic pixel detector R&D

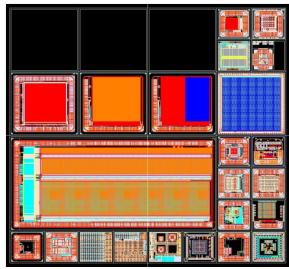
The features of SOI monolithic pixel detector

- Use commercial SOI wafer
- High resistivity silicon --- sensor Low resistivity silicon --- circuit SiO₂ --- insulator
- No mechanical bump bonding
- Lower junction capacitance
- Full dielectric isolation
- Smaller parasitic capacitance
- Technology based on industry standards
- \rightarrow lower cost

SOI Process & MPW

Process (OKI Semiconductor Co. Ltd.)	0.2μm Low-Leakage Fully-Depleted (FD) SOI CMOS 1 Poly, 5 Metal layers , MIM Capacitor, DMOS option, Core (I/O) 1.8 (3.3) V
SOI wafer (200 mm ¢ =8 inch)	Top Si : Cz, ~18 Ω -cm, p-type, ~40 nm thick Buried Oxide: 200 nm thick Handle wafer: Cz ~700 Ω -cm (<i>n</i> -type), 650 μ m thick FZ ~ 8 k Ω -cm (<i>n</i> - or p- type), 650 μ m thick
Backside	Thinned to 260 µm and sputtered with Al (200 nm). (to be optimized)

Multi Project Wafer (MPW) run


- KEK organizes MPW runs
- Mask is shared to reduce cost of a design
- Including pixel detector chip and SOI-CMOS circuit chip
- Once a year in 2005-2008, 2011
- Twice a year in 2009, 2010, (2012-?
- University & institution

KEK, FNAL, LBNL, Kyoto Univ, Tohoku Univ, Univ. of Tsukuba, RIKEN, JAXA, Krakow, Hawaii, and more...

Supporting companies

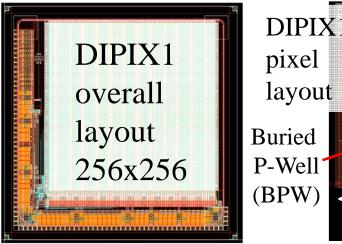
OKI Semiconductor Co. Ltd., OKI Semiconductor Miyagi Co. Ltd., T-Micro Co. Ltd., Rigaku Co. Ltd

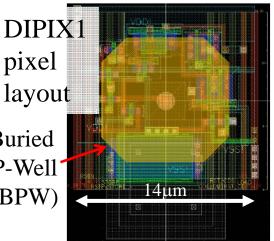
MPW FY10-1 (Aug. 2010)

20.8mm

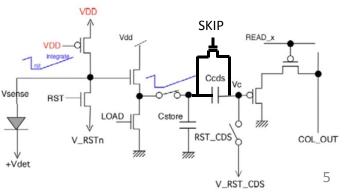
KEK SOI Pixel detectors

- Integration-type pixel detector

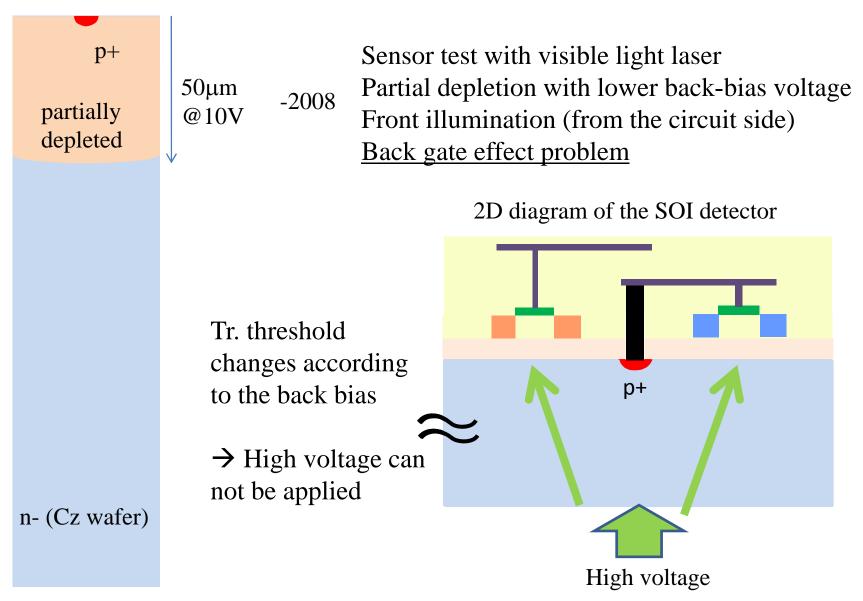

(INTPIX1,2,3a,3b,3c,3e,4 and Dual-mode INTPIX=DIPIX)

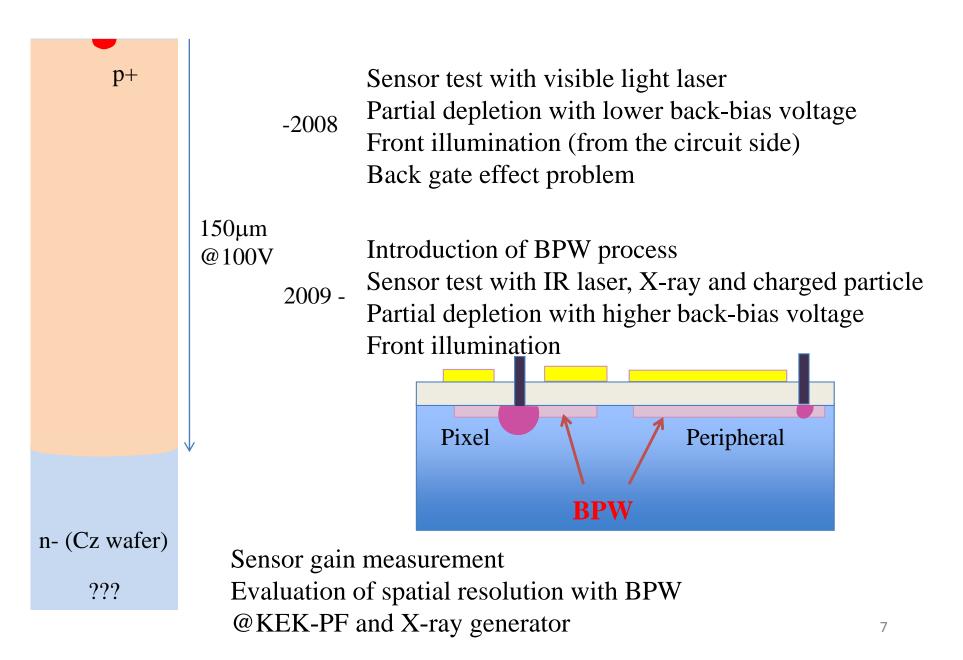

A.Takeda's talk ID=282, (11 Sat.)

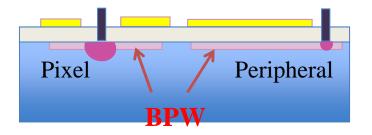
- Counting-type pixel detector (CNTPIX2,3,4,5)


Specification summary of integration-type pixel detector since 2008

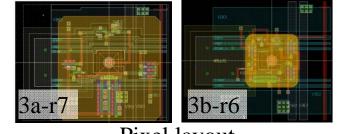
		pixel size	# of pixels	Effective Area	Chip area	Fabrication	# of	CDS in
		[µm]		[mm]	[mm]	year	pixel type	pixel
	INTPIX3a	20 x 20	128 x 128	2.56 x 2.56	5 x 5	FY08	8	No
	INTPIX3b	20 x 20	128 x 128	2.56 x 2.56	5 x 5	FY09-1	8	No
4	INTPIX4	17 x 17	832 x 512	14.144 x 8.704	15.3 x 10.2	FY09-1	1	Yes
	INTPIX3c	20 x 20	128 x 128	2.56 x 2.56	5 x 5	FY09-2	8	No
	INTPIX3e	16 x 16	192 x 192	3.072 x 3.072	5 x 5	FY10-1	1	No
	DIPIX1	14 x 14	256 x 256	3.584 x 3.584	5 x 5	FY10-1	1	Yes
	DIPIX2	14 x 14	256 x 256	3.584 x 3.584	5 x 5	FY10-1	2	Yes

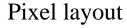





Progress of SOI pixel detector R&D (1)

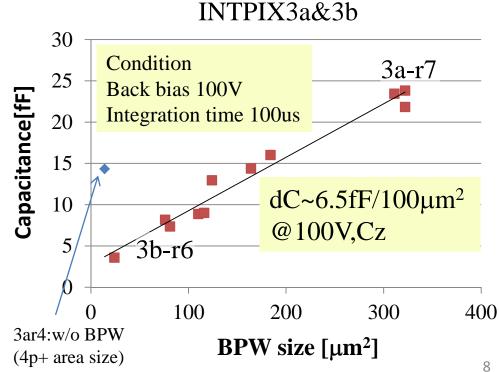
Progress of SOI pixel detector R&D (2)

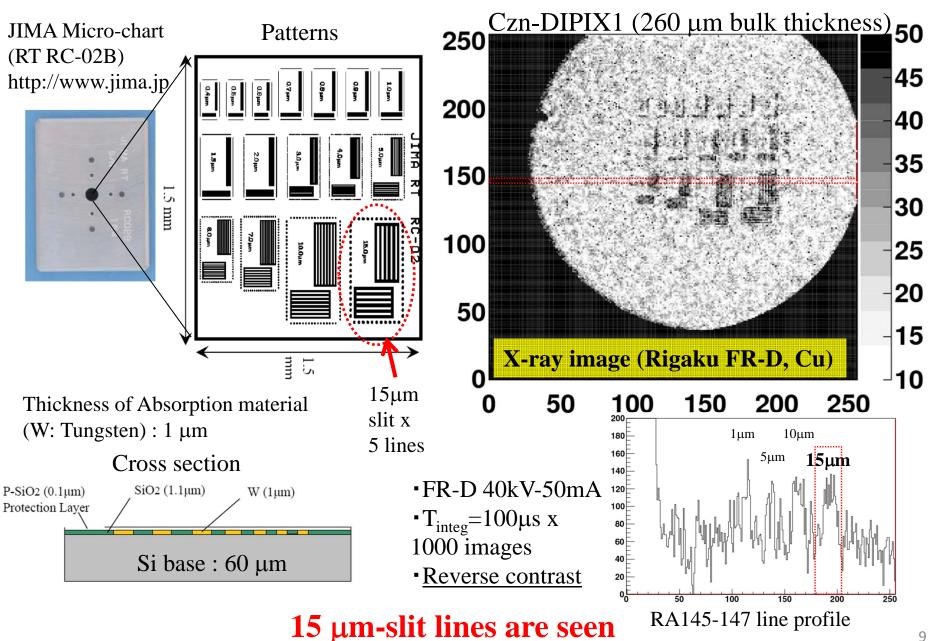



Sensor gain

Pixel contact size ~ a few µm
"BPW-in-pixel" increases sensor capacitance
→ Sensor gain decreases

- Gain measurement was done using SR X-ray in KEK Photon Factory
- X-Ray from 6 keV 18.5 keV in BL-14A
- Internal gain was measured and then calculated capacitance




-Gain decrease with "BPW-in-pixel" size

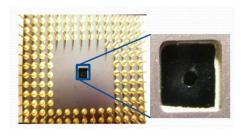
-Capacitance ~ 8fF

Gain ~ 20μ V/e- @ 3b-r6 (optimized BPW size) \rightarrow applied to INTPIX3e

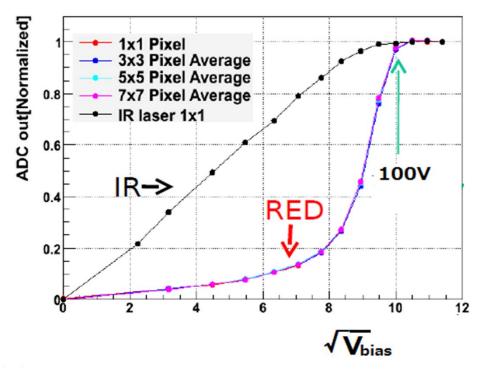
DIPIX1(14µm pixel) spatial resolution

Progress of SOI pixel detector R&D (3)

	p+	100μm @~80V	-2008 []]	Sensor test with visible light laser Partial depletion with lower back-bias voltage Front illumination Back gate effect problem Introduction of BPW process
				Sensor test with IR laser, X-ray and charged particle
	n- (Cz wafer)		2009 -	Wafer thinning by TAIKO process
				- 100µm bulk thickness
		\checkmark		- High energy particle detection (MIP detection)
г			4	- Reduction of material budget
TAIKO=drum in japanese				- Full depletion
				- Back illumination
	La	minated Tape	patterns	
				Thinned INTPIX3a evaluation experiment
0	~~~			- Red & IR laser
				- High energy particle detection
- 1	AIKO Process		ional Process	
Photo:	http://www.disco.co.jp/jp	/solution/library/ta	iko.html	10

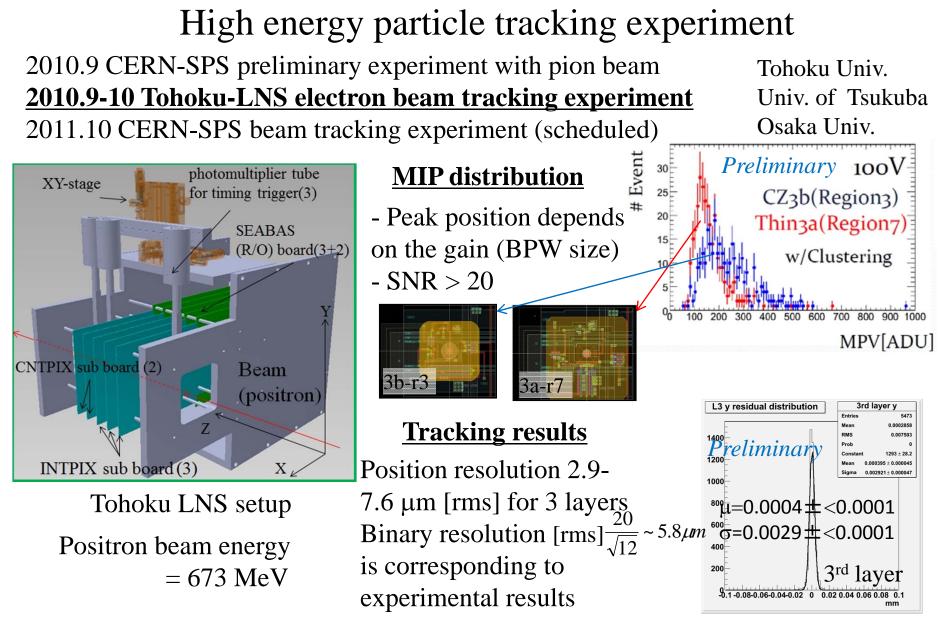

Sensor response after wafer thinning

Front (IR) & back (red) illumination experiment


100 μm-INTPIX3a -Integration time = 10 μs -IR laser focused inside 5μm window -1064nm IR : 3mm penetration depth

Red laser 634nm
stops at surface
Remove aluminum
from the back side

Package photo



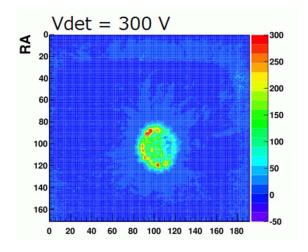
 $(V_{bias} = V_{back} - V_{gnd = bias})$

Pixel photo

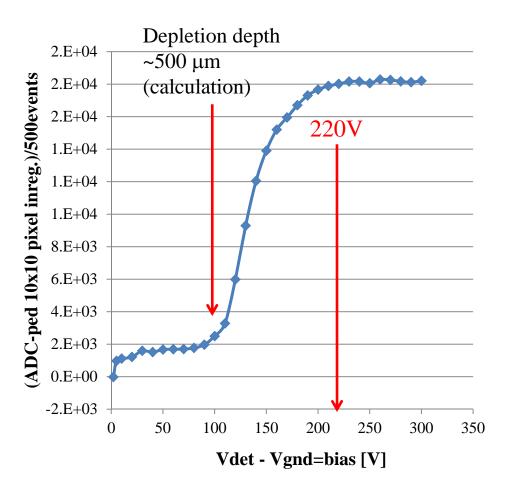
Full depletion at ~100V

Univ. of Tsukuba

We had achieved the first high-energy particle tracking with KEK-SOI detector

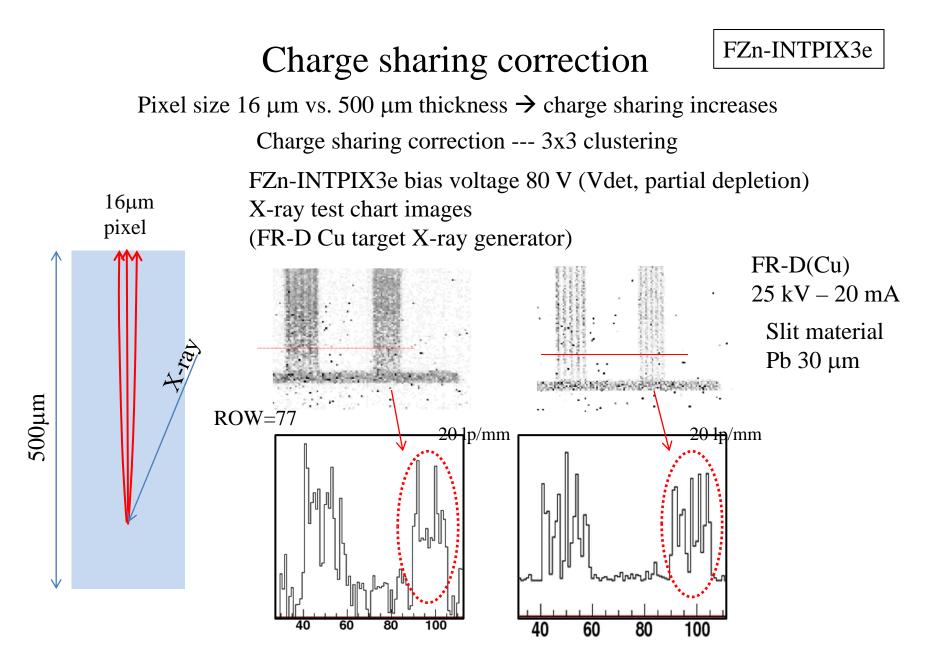

Progress of SOI pixel detector R&D (4)

p+	-2008 Sensor test with visible light laser Partial depletion with lower back-bias voltage Front illumination Back gate effect problem
	260μm2009 -Introduction of BPW process@~30VSensor test with IR laser, X-ray and charged particle@~30VPartial depletion with higher back-bias voltageorFront illumination500μmFront illumination
n- (FZ wafer)	@~100V Introduction of FZ wafer Sensor test with IR laser, X-ray and charged 2010 - particle Full depletion with lower back-bias voltage Back illumination


FZn-INTPIX3e back illumination experiment

SOI sensor chip : FZn-INTPIX3e

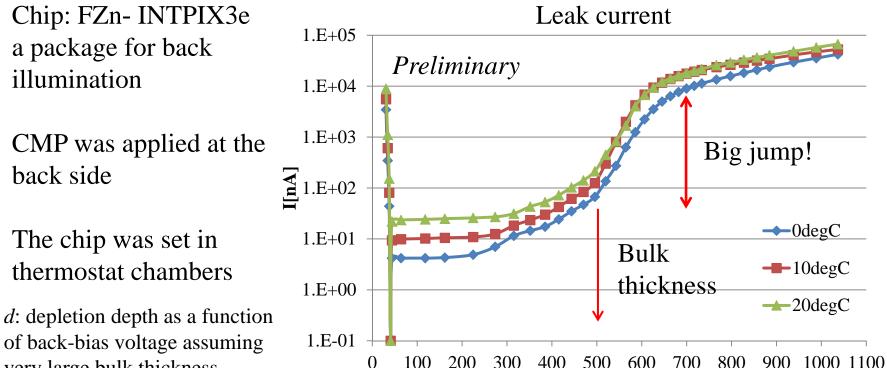
- Resistivity $\sim 8k\Omega$ cm
- Bulk thickness 500 μm
- The back side open (3.1 x 3.1 mm)



Red laser was illuminated from the back side Red laser absorption ~ a few μm 1mmφ Al collimator was used

The sensor is fully depleted > 220V

Improvement of the back-side process is required to reach plateau earlier Full depletion at ~30V with 260 μ m sensor is also confirmed \rightarrow S. Nakashima's talk ID=348



After the correction, 20 lp/mm slit is clearly seen

Progress of SOI pixel detector R&D (5)

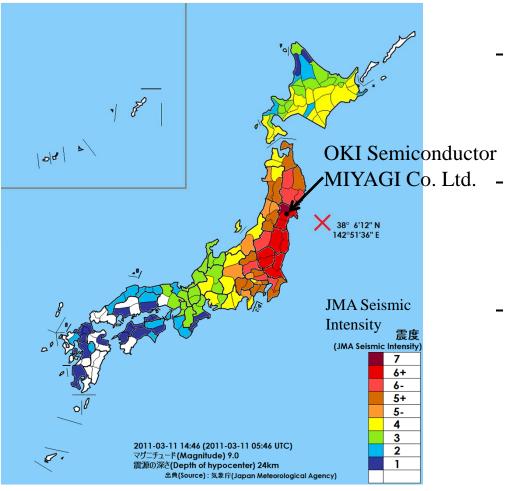
p+	-2	Sensor test with visible light laser Partial depletion with lower back-bias voltage Front illumination Back gate effect problem	
	260μm @~30V or 500μm 20 @~100V	 Introduction of BPW process Sensor test with IR laser, X-ray and charged particle Partial depletion with higher back-bias voltage Front illumination We don't know what happens at the back side 	
n- (FZ wafer) !!!	S 2010 - F B V	roduction of FZ wafer nsor test with IR laser, X-ray and charged particle Il depletion with lower back-bias voltages ck illumination e realized that proper back-side processes are quired	

Current issue : Back-side process

very large bulk thickness $d(V_b) = \sqrt{\frac{2\varepsilon}{qN_d}(\varphi_B + V_b)}$

$$N_d$$
: n- side dope density
 φ_B : build-in potential
 V_b : back-bias voltage (V_{det} - $V_{bias=gnd}$)
 q : elementary charge
 ε : permittivity
 $\rho_n = l/q N_d \mu_N$: resistivity

When applied CMP, pixel dark current decreased at more than full depletion voltage (S. Nakashima's talk ID=348)
However, there is a big jump in the I-V curve (above)
OKI Semi. started the optimization of proper back-side process


Depletion depth d(Vb) [mm]

Conclusion

- Thanks to BPW, higher back-bias voltage can be applied and therefore we started evaluation of SOI pixel detectors with spatial resolution, sensor gain and response to X-ray and high energy particles.
- Applying FZ wafer, SOI pixel detectors became operated with full depletion voltage
- A current issue is back-side process and OKI Semi. started the optimization of the back-side process.
- The SOI pixel detector R&D will move to application studies.

The next slide is the final one...

Schedule

- A large-scale earthquake occurred in Miyagi Prefecture at 2:46 PM on March 11th, 2011.
- No personal suffering and no large scale damage to the OKI Semiconductor Miyagi facilities have been observed
- Operations recommenced mid. of April, and therefore the delay of FY10-2 MPW run will be only 2 months!

FY10-2 MPW process: will complete hopefully in June 2011. FY11 MPW run deadline: Oct. 3rd.

For further information, please attend 3D satellite meeting tomorrow, 16:25-16:50