TIPP 2011 – 2nd International Conference on Technology and Instrumentation in Particle Physics

Upgrade of the ALICE Detector

Petra Riedler/CERN

Photo: Mona Schweizer

TiPp 2011

Overview

□ The ALICE Experiment

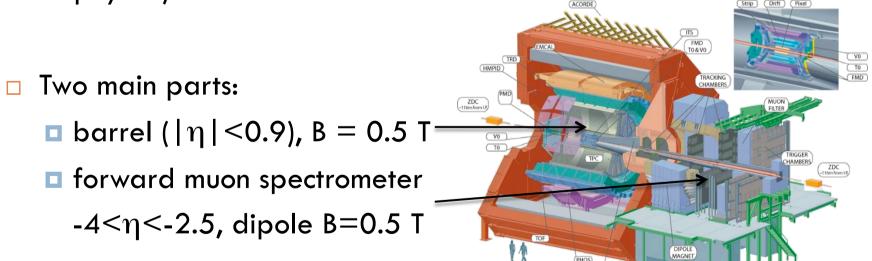
ALICE Upgrade

Selected list of proposals

FOrward CALorimeter - FOCAL

Very High Momentum Particle Identification – VHMPID

Muon Flavour Tracker – MFT

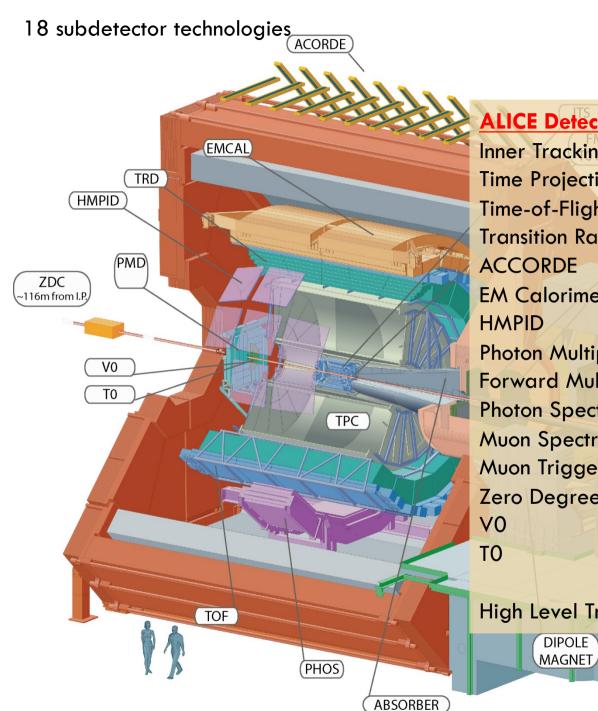

Upgraded Inner Tracking System – ITS

Summary

The ALICE Experiment

- Dedicated heavy ion (HI) experiment at LHC to study strongly interacting matter at extreme energy densities
- Data taking during HI and pp collisions (comparison data for HI physics)

ABSORBER


The ALICE Experiment

- Optimized for Pb-Pb running (interaction rate \sim 10kHz)
- □ Radiation in innermost layers \sim few 10¹³ n_{ea}, few Mrad

Distinct features of ALICE:

- Designed to cover wide momentum range, from soft (down to 100 MeV/c) to hard (>200 GeV/c) physics
- Low p_T cut-off (~100 MeV/c) due to magnetic field and low material budget
- Very good tracking and PID
- Dedicated di-electron and di-muon detection
- High resolution calorimeter for direct photons

ALICE Detectors:

Inner Tracking System ITS (pixels, drift, strips) Time Projection Chamber Time-of-Flight TOF **Transition Radiation Detector** ACCORDE **EM Calorimeter** Photon Multiplicity Detector PMD Forward Multiplicity Detector FMD Photon Spectrometer PHOS **Muon Spectrometer** ZDC 6m from I.P. **Muon Trigger** Zero Degree Calorimeter ZD

Drift

Strip

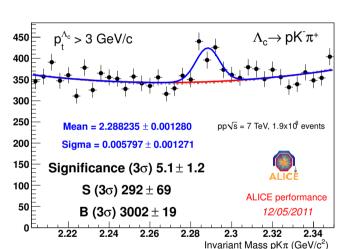
Pixel

High Level Trigger HLT

V0

Τ0

FMD


P. Riedler/CERN TIPP 2011 Conference

ALICE Upgrade

- 6
- □ Address open physics issues, which cannot be tackled with the current setup $\Lambda_c \inf pp @ \sqrt{s} = 7 \text{ TeV}$
 - Increase coverage and
 - * Enhance measurement capabilities

Some of the open physics topics to address:

- Heavy flavour production
- Hadronization
- Small-x structure of nuclei and protons
- Large range rapidity correlations

ALICE Upgrade Schedule

Upgrade plans defined by Pb-Pb results from first HI runs. However, long LHC shutdowns determine access to the experiment.

Timeline:

- Expression of Interest (spring 2011) for various proposals (see following slides)
- Workshop on the physics of upgrades in ALICE, July 12+13, 2011 – close interaction with theorists
- Call for Letters of Intent (autumn 2011)
- Preliminary decision on approval of upgrade projects by end 2011
- Most upgrades scheduled for LHC shutdown 2017/18

ALICE Upgrade Proposals

ACORDE Inner Tracker System Muon Forward Tracker ITS FMD (EMCAL) T0 & V0 TRD HMPID VHMPID TRACKING Further proposals: CHAMBERS PMD • TPC readout upgrade ZDC 116m from I.P. • DAQ/Trigger • AD (diffraction) VO TO TRIGGER TPC CHAMBERS ZDC ~116m from I.P. TOF DIPOLE MAGNET (PHOS) **Forward Calorimeter** ABSORBER

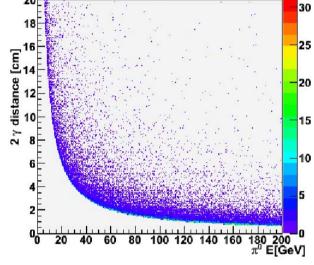
8

ALICE Upgrade Proposals

Vertex (ITS & MFT) upgrade:

- heavy flavour baryons, charm coverage at low pT, b-tagging for muons, measurement of exclusive B-decays
- Forward EM calorimeter (FOCAL):
 - □ low-x in pA, AA, photon/pion discrimination
- Particle ID upgrade (VHMPID):
 - \Box extend to p_T range for track-by-track identification to O(20) GeV/c
- **TPC** readout upgrade:
 - increase rate capability of TPC (faster gas, increased r/o speed)
- DAQ & HLT upgrades:
 - more sophisticated and selective triggers

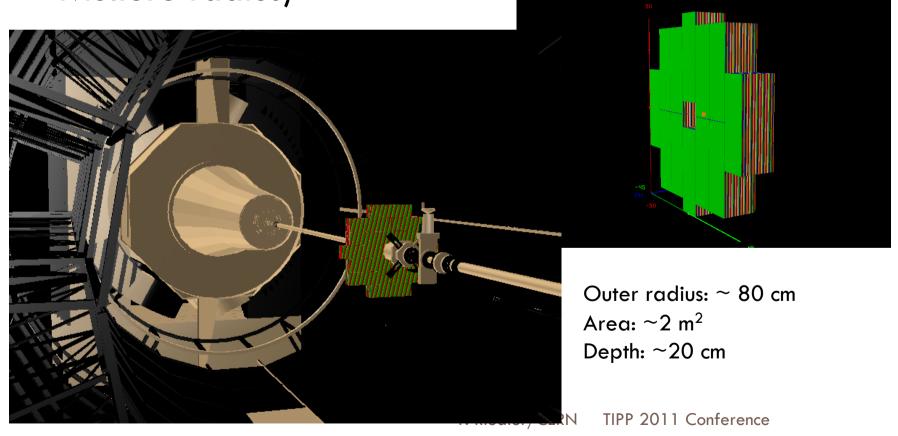
FOCAL


Large rapidity coverage

2.5 $< \eta < 4.5$

- EM calorimeter for photons, neutral mesons (π⁰,η), maybe e⁺e⁻
- Requirements:
 - π^0 / γ discrimination at high momentum
 (~200 GeV/c)
 - High granularity to cope with particle density in Pb-Pb
- $\square \sim 350$ cm from IP

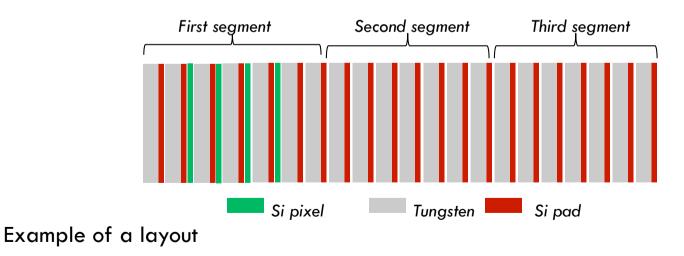
2 γ from π^0 at 4.5 m away from IP



Two-photon distance D(2 γ) from $\pi^0 \rightarrow 2\gamma$ decay at 4.5m from interaction point: Minimum D(2 γ) = 0.6 cm for 200 GeV π^0

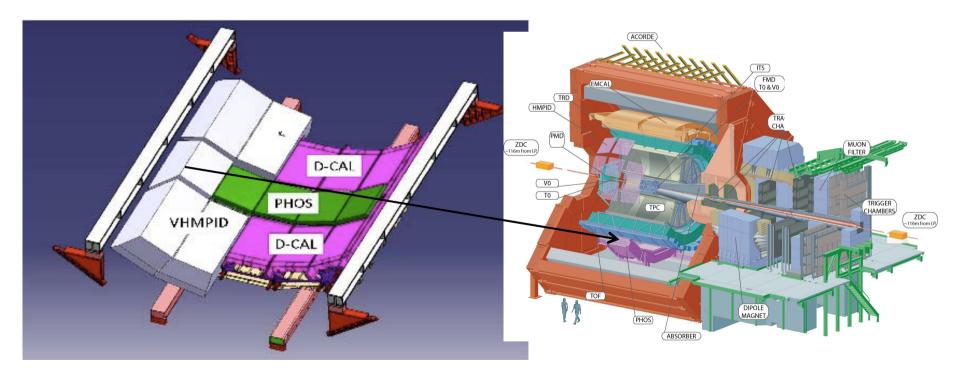
FOCAL Technology

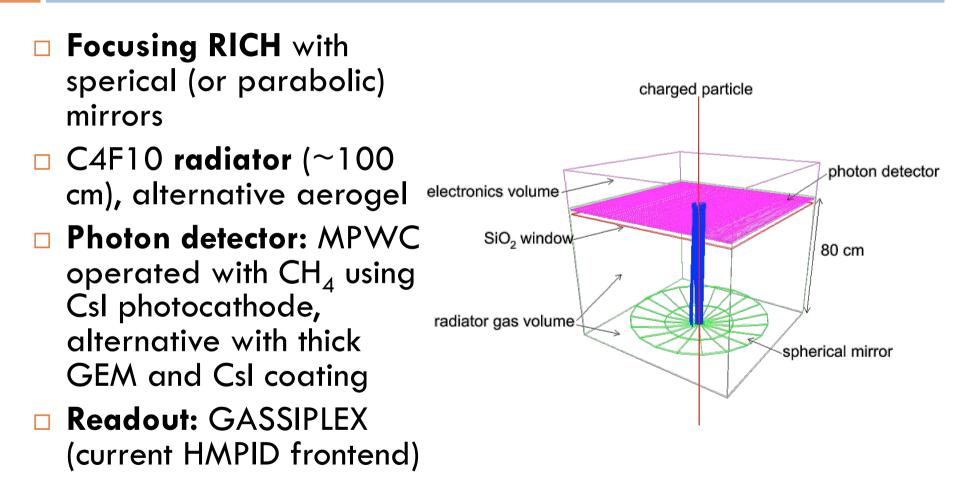
Preferred material Si+W (small segmentation, small Moliere radius)



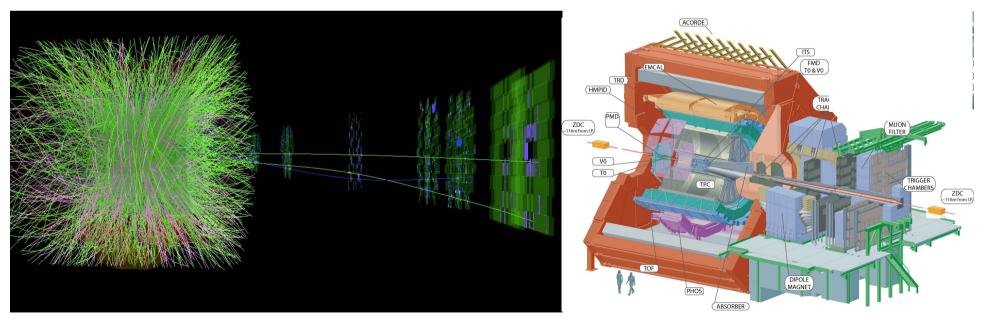
FOCAL Technology

12


- Detailed layout to be defined
- Approximately 21 layers along z
- □ W thickness: 3.5 cm
- □ Silicon technology options:
 - Si pads (~1 cm x 1 cm or smaller), 300 um thick, dedicated ASICs
 - Pixels (monolithic, ITS upgrade) at 2, 3, 4, 5 X₀

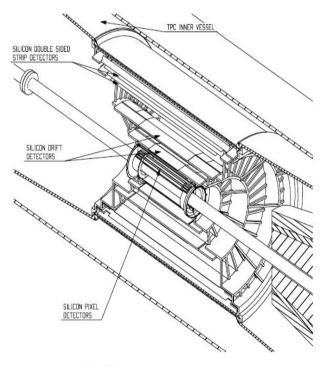

Identify pions, kaons and protons on a track-bytrack basis in the range from 10-25 GeV/c

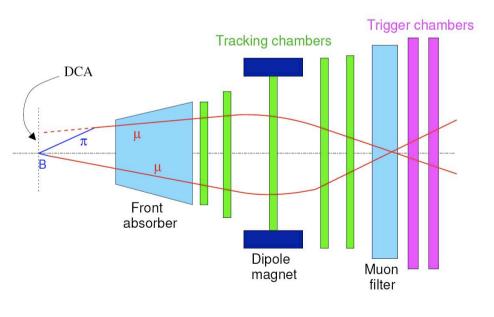
VHMPID Technology


14

MFT

- □ Complement muon arm with tracking in front of absorber
- Determine muon origin accurately
 - Silicon tracking station before the front-absorber




P. Riedler/CERN TIPP 2011 Conference

MFT

- Requires modification of the beampipe and integration with the ITS
- Technology under discussion, e.g. possible use of monolithic silicon pixel detectors (ITS upgrade)

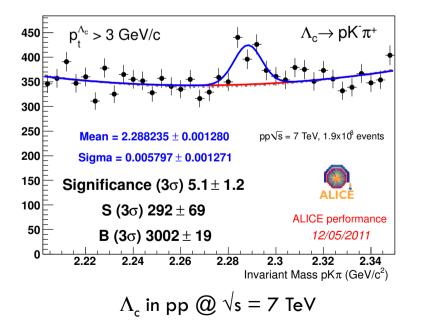

P. Riedler/CERN TIPP 2011 Conference

Figure 2.1: General view of the Inner Tracking System.

ITS Upgrade

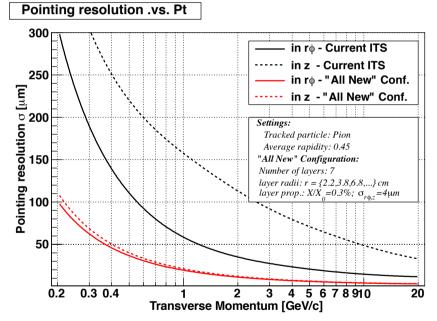
- Currently 6 silicon layers (pixel, drift, strips), 3.9<r<43 cm, total material budget 7% X₀
- Improve impact parameter resolution by factor 2-3 to access new physics, e.g. charmed baryons

$\Lambda_c^*(udc)$	m ≈ 2285 MeV	$c\tau \approx 60 \mu m$
$\Xi_c^+(usc)$	m ≈ 2466 MeV	$c\tau \approx 132 \mu m$
$\Xi_c^0(dsc)$	m ≈ 2472 MeV	$c\tau \approx 34 \mu m$
$\Omega_c^0(ssc)$	m ≈ 2698 MeV	$c\tau \approx 21 \mu m$

P. Riedler/CERN TIPP 2011 Conference

ITS Upgrade

Technical goals:


- Reduce beampipe parameter and place Layer 0 at ~ 20-22 mm radius
- Material budget (innermost layers) to 0.3-0.5% X₀
- Reduce pixel size to 20-30 um in r-phi (possibly z)
- 3 pixel layers followed by 3-4 strip layers
- Trigger capability (L2 ~ 100us): topological trigger, fast-OR and fastSUM at L0/L1(1.2 us/7.7 us)
- \blacksquare Increased acceptance ($\mid\!\eta\!\mid>$ 0.9)

ITS Upgrade

Pixel technologies under study:

- Hybrid pixels:
 - 100 um sensor + 50 um ASIC
 - 30 um x 100 um pixels
- Monolithic pixels:
 - 50 um ASIC
 - 20 um x 20 um pixels
- Requirements:
 - Readout time < 50 us</p>
 - radiation tolerant (2 Mrad, 2 10¹³ n_{ea})
 - Low power design (250 mW/cm²)


Further Proposals

Increase TPC high rate capability (change gas mixture, upgrade readout electronics)

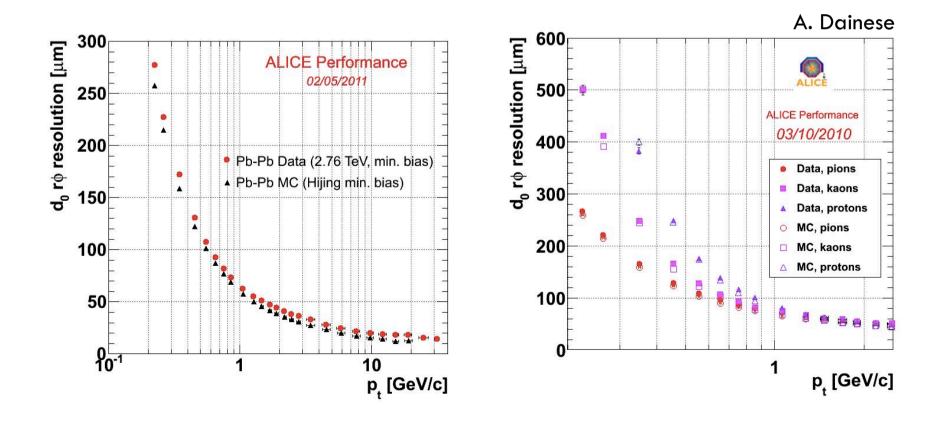
DAQ/Trigger update (replace components, allow for further and more complex triggers)

P. Riedler/CERN TIPP 2011 Conference

Summary

□ ALICE is successfully taking data in pp and HI runs

- An upgrade will allow to address new physics topics.
- Several upgrade proposals have been submitted and the LOIs are being prepared for autumn 2011.
- We are looking forward to meeting the technical challenges and to encounter the new physics opportunities lying ahead.



ITS Tracking Performance

23

- > Charm: precise measurement of D mesons down to $p_T \sim 1$
 - not at all trivial in PbPb with current setup
- > Λ_c : beyond capabilities of current setup in HI collisions

