Basic Electronics

Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011

Chicago, Illinois June 9-14, 2011

Presented By

Gary Drake

Argonne National Laboratory

Session 2

Session 2

Time-Varying Signals & Circuits

Time-Varying, Periodic Sources

- Periodic Time-Varying Sources → "Steady State"
 - Sinusoidal

• Square Wave

Triangle Wave

• Pulse Train

Comb Function

Can be Voltage Sources or Current Sources
 Depends on..... Source Impedance!

Sinusoidal Sources

- Sinusoidal Sources
 - Characterized by frequency ω ($\omega=2\pi f),$ phase $\phi,~$ period T~ (T = 1 / f), and peak amplitude $V_{\rm p}$

• Is the average value important?

$$V_{AVG} = 1/T \int_{0}^{T} v_{O}(t) dt = 1/T \int_{0}^{T} V_{P} \sin(\omega t) dt = 0 \Rightarrow No, not really...$$

• We often use the "Effective Value," or RMS

$$V_{EFF} = \sqrt{1/T} \int_{0}^{T} v_{O}^{2}(t) dt = \sqrt{1/T} \int_{0}^{T} V_{P}^{2} \sin^{2}(\omega t) dt$$
$$= V_{P} / \sqrt{2} \qquad \Rightarrow This IS useful...$$

Basic Electronics – Special Lecture for TIPP 2011 ^{Images from Wikipedia} 4 Gary Drake, Argonne National Lab – Session 2

Resistive Circuits with Steady State Sources

Consider again a resistive network, but this time with a sinusoidal source What is the instantaneous power

Just as before, we can use Kirchoff's Laws:

 $i_1(t) R_1 - v_s(t) = 0$ $i_1(t) = v_s(t) / R_1$ $v_{O}(t) = v_{S}(t)$

<u>consumed by R_1 ?</u>

$$p_1(t) = v_1(t) \quad i_1(t)$$

= $V_p \sin(\omega_0 t) [V_p \sin(\omega_0 t)] / R_1$
= $[V_p^2 / R_1] \sin^2(\omega_0 t)$

What is the average power consumed by R_1 ? $P_{AVG} = 1/T \int_{0}^{t} p_{1}(t) dt$ = $1/T \int_{0}^{T} [V_{P}^{2}/R_{1}] \sin^{2}(\omega_{o} t) dt$ $P_{AVG} = \frac{1}{2} V_P^2 / R_1$ = V_{EFF}^2 / R_1 , since V_{EFF} = V_P / $\sqrt{2}$

In general,

$$P_{AVG} = V_{EFF} \quad I_{EFF}$$

⇒ Says that Effective Values of a sinusoid produce average power equivalent to comparable DC values

Resistive Circuits with Steady State Sources

 In general, can perform the same analysis with any resistive network
 <u>Voltage Divider – From before:</u>

$$v_s(t) = V_p \sin(\omega_0 t)$$

$$I_1 R_1 + I_1 R_2 - V_s = 0$$

$$I_1 = V_s / (R_1 + R_2)$$

Then:

 $V_1 = I_1 R_1, V_2 = I_1 R_2$

$$V_0 = V_S R_2 / (R_1 + R_2)$$

<u>Inserting the time-varying source:</u> $v_o(t) = V_p [R_2 / (R_1 + R_2)] \sin(\omega_0 t)$

 $P_{AVG} = V_{EFF} \quad I_{EFF}$ = ½ V_p [R₂ / (R₁+R₂)] [V_p / (R₁+R₂)]

$$P_{AVG} = \frac{1}{2} V_P^2 [R_2 / (R_1 + R_2)^2]$$

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 2 6

- Sinusoidal Sources
 - Why are sinusoids important?
 - Reason #1: Our electrical grid works on sinusoidal power
 - Famous shoot-out between Nikola Tesla and Thomas Edison, 1893 Worlds Fair in Chicago (Tesla won, but died a pauper...)

- Sinusoidal Sources (Continued)
 - Why are sinusoids important (Cont.)?
 - Reason #2: Convenient representation in the Frequency Domain

• Define *phasors*: $F(\omega) = Mag Angle$

If: $v(t) = V_P \cos(\omega_0 t + \phi_0)$ Phasor form: $V(\omega) = V_P / \phi_0$

⇒ Has connection with Complex Number Analysis... ⇒ More on this later

- Sinusoidal Sources (Continued)
 - Why are sinusoids important (Cont.)?
 - Reason #3: Any periodic waveform can be represented as an infinite sum of sinusoids, with frequencies that are multiples of the fundamental frequency ω_Ω → Fourier Series

– For any periodic waveform V(t), with fundamental frequency ω_{O}

– The coefficients E_n are given by:

$$E_n = 1/T \int_{-T/2}^{T/2} V(t) e^{-jn\omega_0 t} dt$$

 \Rightarrow *n* ω_0 are the harmonic frequencies of v(t)

- Sinusoidal Sources (Continued)
 - Why are sinusoids important (Cont.)?
 - Example: Fourier Series of a Square Wave

where $E_n = (2V_P / n\pi) \sin(n\pi / 2)$

⇒ Notice that only the odd harmonics of v(t) are present in this particular example...

- More generally, use the Fourier Transform
 - For a periodic function v(t) with period T, the Fourier Transform is defined as:

$$\mathscr{F}[v(t)] = V(j\omega) = \int v(t) e^{-j\omega t} dt$$
 where $j = \sqrt{-1}$

⇒ Generally, we will ignore the negative frequency space...

- Fourier Transform Properties
 - For a periodic function v(t) with period T, the Fourier Transform is defined as:

$$\mathcal{F}[v(t)] = V(j\omega) = \int v(t) e^{-j\omega t} dt$$
 where $j = \sqrt{-1}$

• The Inverse Fourier Transform is given as:

$$\mathcal{F}^{-1}[V(j\omega)] = v(t) = 1/(2\pi) \int_{-\infty}^{\infty} V(j\omega) e^{j\omega t} d\omega$$

• An important Transform property that we will use:

$$\mathcal{F}[d/dt v(t)] = j\omega V(j\omega)$$

⇒ Fourier Transforms generally generate Complex Numbers...

- A Review of Complex Numbers
 - For

 $F(j\omega) = a_{REAL} + j b_{IMAG}$

Think of Complex Plane

• These are related to Phasors

Phasor form:
$$F(j\omega) = |F(jw)| / \phi$$

 $F(j\omega) = Mag / Angle$

- Basic Principles
 - We will generally use sinusoidal excitation to evaluate the performance of circuits, and sweep the frequency over a range of interest

- In general, when energy storage elements are involved, we will calculate circuit response in the *frequency domain*
- Use Complex Analysis → REAL & IMAG → Phasor forms
- Use Fourier Transforms

Frequency Domain Analysis Capacitors Revisited $20 \text{ Log} \mid \text{Z}_{\text{C}}$ i(t) = C dv(t) / dt $\mathscr{F}[i(t)] = \mathscr{F}[C dv(t) / dt]$ Log ω $\mathbf{Z}_{\mathbf{C}}$ $I(j\omega) = j\omega C V(j\omega)$ $Z_{C}(j\omega) = V(j\omega) / I(j\omega) = 1 / (j\omega C)$ Log ω -90 Inductors Revisited $20 \text{ Log} \mid \text{Z}_{\text{L}}$ v(t) = L di(t) / dt

Example 1 – Simple RC Circuit

First, express $v_i(t)$ in complex form

Phasor form: $V_i(j\omega) = V_P / 0$

Example 1 (Cont.)

 $v_i(t) = V_p \cos(\omega_0 t)$

Next, express C₁ as an impedance in complex form

$$\mathbf{Z}_{\mathrm{C1}}(\mathrm{j}\,\omega) = 1 \ / \ (\ \mathrm{j}\,\omega \ \mathrm{C_1})$$

• Find $V_O(j\omega)$ using Kirchoffs' Voltage Law

$$I_1 R_1 + I_1 Z_{C1}(j\omega) - V_i(j\omega) = 0$$

 $\frac{\text{Solution} \rightarrow \text{Voltage Divider:}}{V_{O}(j\omega)} = \frac{V_{i}(j\omega) Z_{C1}(j\omega)}{R_{1} + Z_{C1}(j\omega)}$ $V_{O}(j\omega) = \frac{V_{i}(j\omega) [1/(j\omega C_{1})]}{R_{1} + [1/(j\omega C_{1})]}$ $\frac{\text{Rearrange, using complex algebra:}}{R_{1} + [1/(j\omega C_{1})]}$

$$V_{O}(j\omega) = \frac{V_{i}(j\omega)}{j \omega R_{1} C_{1} + 1}$$

Example 1 (Cont.)

• Next, express in Phasor Form

$$V_{O}(j\omega) = \frac{V_{i}(j\omega)}{j \omega_{o} R_{1} C_{1} + 1}$$

$$= \frac{V_{P} / 0}{\sqrt{(\omega_{o} R_{1} C_{1})^{2} + 1}} / \frac{\tan^{-1} [\omega_{o} R_{1} C_{1}]}{\tan^{-1} [\omega_{o} R_{1} C_{1}]}$$

$$= \frac{V_{P} / - \tan^{-1} [\omega_{o} R_{1} C_{1}]}{\sqrt{(\omega_{o} R_{1} C_{1})^{2} + 1}}$$

Solution:

$$\begin{split} V_{O}(j\omega) &= \frac{V_{P}}{\sqrt{(\omega_{o} R_{1} C_{1})^{2} + 1}} \frac{/-\tan^{-1} [\omega_{o} R_{1} C_{1}]}{\sqrt{(\omega_{o} R_{1} C_{1})^{2} + 1}} \\ v_{O}(t) &= \frac{V_{P}}{\sqrt{(\omega_{o} R_{1} C_{1})^{2} + 1}} \cos (\omega_{o} t - \tan^{-1} [\omega_{o} R_{1} C_{1}] \end{split}$$

- Example 1 (Cont.)
 - Try some numbers

$$v_{0}(t) = \frac{V_{P}}{\sqrt{(\omega_{o} R_{1} C_{1})^{2} + 1}} \cos (\omega_{o} t - tan^{-1} [(\omega_{o} R_{1} C_{1})]$$

$$v_i(t) = V_p \cos(\omega_0 t)$$

a) Let $R_1 = 1 \text{ K}\Omega$, $C_1 = 1 \mu\text{F}$, $V_P = 1\text{V}$, $\omega_o = 10 \text{ rad/sec}$

Solution: $v_0(t) \approx 1 \cos (\omega_0 t - 0^{\circ})$

Almost no change $\rightarrow v_{0}(t) \approx v_{i}(t)$

b) Let $R_1 = 1 \text{ K}\Omega$, $C_1 = 1 \mu\text{F}$, $V_P = 1V$, $\omega_0 = 1000 \text{ rad/sec} \rightarrow X100$

Solution: $v_0(t) = 0.707 \cos (\omega_0 t - 45^\circ)$ \leftarrow Moderate change $\rightarrow v_0(t)$ decreasing

c) Let $R_1 = 1 \text{ K}\Omega$, $C_1 = 1 \mu\text{F}$, $V_P = 1V$, $\omega_0 = 100,000 \text{ rad/sec} \rightarrow X 10,000$

Solution: $v_0(t) = 0.099 \cos (\omega_0 t - 84.2^\circ) \longleftarrow$ Big change $\rightarrow v_0(t) \rightarrow 0$

⇒ We could plug in numbers all day long, but let's find a better way...

- A useful tool to aid in analyzing circuits in the frequency domain is the concept of a *Transfer Function*
 - Suppose have a network that contains R's, L's, C's and even transistors
 - Suppose have a single input $F(j\omega)$ (called a Forcing Function)
 - Could be either a voltage or a current
 - Suppose have a single output variable of interest $E(j\omega)$ that responds in some way to the input
 - Could also be either a voltage or a current
 - Denote the network as $H(j\omega)$

- Back to Example 1:
 - Back to Frequency Domain

$$v_{0}(t) = \frac{V_{P}}{\sqrt{(\omega_{0} R_{1} C_{1})^{2} + 1}} \cos (\omega_{0} t - tan^{-1} [(\omega_{0} R_{1} C_{1})]$$

$$V_{O}(j\omega) = \frac{V_{i}(j\omega)}{\sqrt{(\omega_{o} R_{1} C_{1})^{2} + 1}} / \frac{-\tan^{-1} [(\omega_{o} R_{1} C_{1})]}{\sqrt{(\omega_{o} R_{1} C_{1})^{2} + 1}} \Rightarrow Phasor Form$$

 $\frac{\text{To find general solution, plot } V_{\underline{o}}(j\omega) / V_{\underline{i}}(j\omega)}{V_{\underline{o}}(j\omega)} \xrightarrow{} \text{Transfer Function}} \Rightarrow H(j\omega) = \frac{\text{Output } (j\omega)}{\text{Input } (j\omega)}$

 $\frac{V_{0}(j\omega)}{V_{i}(j\omega)} = \frac{1}{\sqrt{(\omega R_{1} C_{1})^{2} + 1}} / \frac{-\tan^{-1}[(\omega R_{1} C_{1})]}{-\tan^{-1}[(\omega R_{1} C_{1})]} = Mag / Angle$

 \Rightarrow Now, plot $|V_o / V_i|$ vs. ω , and V_o / V_i vs. ω

(Actually, plot 20 Log $|V_o/V_i|$ vs. Log ω , and V_o/V_i vs. Log ω)

- Example 1 (Cont.)
 - General Guidelines for Bode Plots (Note: The following is true ONLY for single pole circuits (1 energy storage element)

- Example 1 (Cont.)
 - This configuration is known as a "Low-Pass Filter"
 - Low frequencies are passed with 0 db attenuation (→ Gain = 1)
 - High frequencies are attenuated
 - Filter frequency = pole frequency

$$\omega_{o} = 1 / R_{1} C_{1}$$

$$R_1 = 1 \text{ K}\Omega, C_1 = 1 \mu\text{F}$$

⇒ You can create Bode Plots almost by inspection !!!

Example 2 – Simple RL Circuit

- Find $V_{O}(j\omega)$ using Kirchoffs' Voltage Law

→ Voltage Divider

$$I_1 R_1 + I_1 Z_{L1}(j\omega) - V_i(j\omega) = 0$$
 $\frac{V_0(j\omega)}{V_i(j\omega)} = \frac{\omega L_1 / R_1}{\sqrt{(\omega L_1 / R_1)^2 + (1)^2 / 1}}$
 $V_0(j\omega) = \frac{V_i(j\omega) Z_{L1}(j\omega)}{R_1 + Z_{L1}(j\omega)}$
Denominator is ~ the san

Basic Electronics - Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 2

impedance of an inductor: $Z_{L_1}(j\omega) = j \omega L_1$ $V_{O}(j\omega) = \frac{V_{i}(j\omega) j \omega L_{1}}{R_{1} + j \omega L_{1}} = \frac{V_{i}(j\omega) j \omega L_{1} / R_{1}}{1 + j \omega L_{1} / R_{1}}$ Transfer Function:

Insert expression for

Now have frequency content in the numerator

$$\frac{g(j\omega)}{(j\omega)} = \frac{\omega L_1 / R_1 / 90}{\sqrt{(\omega L_1 / R_1)^2 + (1)^2 / \tan^{-1} [(\omega L_1 / R_1])^2}}$$
Denominator is ~ the same as before
 \rightarrow Have a pole at $\omega = R_1 / L_1$

26

Example 2 (Cont.) +00000 **Examining Bode Plots for features** Vi v₀ L_1 $V_0(j\omega)$ 90 $\omega L_1 / R1$ $/ an^{\cdot 1}$ [($\omega_{
m o} \, {
m L}_{
m 1}$ / ${
m R}_{
m 1}$] V_i(j ω) $\sqrt{(\omega L_1 / R_1)^2 + (1)^2}$ $20 \text{ Log} \mid \text{H(j}\omega) \mid \text{db}$ /H(jω) ° +20+1350 +90-20+45-400 _ -60-45 -Log ω Log ω -80 . -901E1 1E2 1E0 1E3 1E4 1E5 1E6 1E0 1E1 1E2 1E3 1E4 1E5 1E6 Response Response Response Response rises at ends flat starts out flat ends flat With +90° +20 db/decade At critical frequency, Phase shift At critical frequency, see half-way point see inflection point What is that frequency? What is that frequency? $\omega = 1 / R_1 C_1$ $\omega = R_1 / L_1$ ⇒ Again, the "pole" frequency \Rightarrow It's a "pole" frequency ⇒ Actual: -45 ° ⇒ Actual: –3 db Basic Electronics - Special Lecture for TIPP 2011 28 Gary Drake, Argonne National Lab – Session 2

- Example 2 (Cont.)
 - This configuration is known as a *"High-Pass Filter"*
 - High frequencies are passed with 0 db attenuation (→ Gain = 1)
 - Low frequencies are attenuated
 - Filter frequency = pole frequency $\omega_0 = R_1 / L_1$
 - Also has a Zero at 0 frequency

$$v_{i}(t) = V_{p} \cos(\omega_{O} t)$$

- General Features of Transfer Functions & Bode Plots
 - For a general transfer function $H(j\omega)$, express as:

- - Magnitude changes by –20 db/decade
 - Phase lag → phase changes by –90°
- The numerators give the Zeros of the Transfer Function ⇒ Where B/A = 1
 - Magnitude changes by +20 db/decade
 - Phase Lead → Phase changes by +90°

- General Features of Transfer Functions & Bode Plots (Cont.)
 - Bandwidth
 - Generally concerned with points in frequency where the response begins to fall off
 Look for 3db points
 - Consider a typical amplifier

 $20 \text{ Log} | H(j\omega) | db$

- The pass band is defined as the range of frequencies where the response is flat
 - ⇒ Exercise: Suppose that stereo has a frequency response of 20 Hz to 20 KHz, and a maximum gain of 30 db. Can you draw the frequency plot?

Filters

Analog Filters

- Many types
- Most use "active" components (i.e. op amps), and have Gain
- A few examples:

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 2 32

Aperiodic Sources

• Impulse
$$v(t) = V_p \delta(t - t_0)$$

$$V_P$$
 \uparrow t_O t

• Step
$$v(t) = V_p u(t - t_0)$$

• Exponential $v(t) = V_p e^{-a(t-t_0)} u(t-t_0)$

For aperiodic signals,
 → Laplace Transform

$$\mathscr{L}[v(t)] = V(s) = \int_{-\infty}^{\infty} v(t) e^{-st} dt$$

$$\mathscr{L}^{-1}[V(s)] = v(t) = \int_{C-j^{\infty}}^{C+j^{\infty}} V(s) e^{st} ds$$

where
$$s = a + j\omega$$

• Two important properties:

$$\mathscr{L}[d/dt v(t)] = s V(s) - v(0^{-})$$
$$\mathscr{L}[\int_{0}^{t} v(\lambda) d\lambda] = V(s) / s$$

- $\hfill \label{eq:constraint}$ What about Impedances Z_C and $Z_L?$
 - Replace $j\omega \rightarrow s$

 $\frac{\perp}{\Box}$ C

Capacitors Revisited

$$i(t) = C dv(t) / dt$$

$$\mathscr{L}[i(t)] = \mathscr{L}[C dv(t) / dt]$$

$$I(s) = s C V(s)$$

$$Z_{C}(s) = V(s) / I(s) = 1 / (s C)$$

Inductors Revisited

00000 L $v(t) = L \operatorname{di}(t) / \operatorname{dt}$ $\mathscr{L}[v(t)] = \mathscr{L}[L \operatorname{di}(t) / \operatorname{dt}]$ V(s) = s L I(s) $Z_{L}(s) = V(s) / I(s) = s L$

Recall RC circuit

Gary Drake, Argonne National Lab - Session 2

Two Basic Circuit Principles

- Linearity
 - If a system H is linear, and has response E_o to forcing function input F_i, such that:

$$E_{o}(j\omega) = H(j\omega) F_{i}(j\omega)$$

then if the forcing function is multiplied by a constant factor K (a real number), the output responds as: \rightarrow

H(jω) [K
$$F_i(jω)$$
] = K $E_o(jω)$

- Networks that contain resistors, capacitors, and inductors are linear networks
- Networks that contain semiconductor devices may or may not be linear
 - Depends on how the semiconductors are biased or being used

⇒ More on this in the next session

Two Basic Circuit Principles

- Superposition
 - If any linear network contains several independent sources (voltage sources or current sources), the quantity of interest (voltage across a component or current through a component) may be calculated by analyzing the circuit with one source at a time, with the other sources made "dead":
 - Voltage sources are replaced by short circuits (\rightarrow 0 impedance)
 - Current sources are replaced by open circuits (\rightarrow infinite impedance)
 - The complete response then is obtained by adding together the individual responses

Two Basic Circuit Principles

• Then: $V_o(j\omega) = V_{o1}(j\omega) + V_{o2}(j\omega) + V_{o3}(j\omega)$

⇒ Will use this idea for analyzing amplifier circuits with DC & AC sources

Time-Varying Circuits

- Concluding Remarks
 - Background presented here is the basis for all of modern communications
 - How can you have 500 cable channels and mixed internet on a single coaxial cable?...

Answer: Because superposition works...

 It is also the primary method by which analog circuits are designed and analyzed