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Time-Varying, Periodic Sources
 Periodic Time-Varying Sources  “Steady State”

• Sinusoidal

• Square Wave

• Triangle Wave

• Ramp

• Pulse Train

• Comb Function

t

t

t

t

t

t

 Can be Voltage Sources or Current Sources
 Depends on…..  Source Impedance!
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 Sinusoidal Sources
• Characterized by frequency f), phase ,  period  (T = 1 / f),

and peak amplitude Vp

• Is the average value important?

• We often use the “Effective Value,” or RMS

VEFF =  e 1/T f vO
2(t) dt =  e 1/T f VP

2 sin2(t) dt

= VP / S 2

Sinusoidal Sources

t

VAVG = 1/T f vO(t) dt = 1/T f VP sin(t) dt = 0

0

T

vO(t) =  VP sin(t + )VP

T
-VP

Images from Wikipedia

0

T

0

T

 No, not really…

0

T

 This IS useful…
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Resistive Circuits with Steady State Sources
 Consider again a resistive network, but this time with a 

sinusoidal source

vs(t) = Vp sin(  t)

Just as before, we can use 
Kirchoff’s Laws:

i1(t) R1 – vs(t)= 0
i1(t) = vs(t) / R1

vO(t) =  vS(t)

v1(t)

vs(t)





What is the instantaneous power 
consumed by R1?
p1(t) = v1(t)  i1(t)  

= Vp sin(o t)  [Vp sin(o t)] / R1

= [Vp
2 / R1]  sin2(o t)I1





R1

What is the average power consumed by R1?

PAVG = 1/T f p1(t) dt

= 1/T f [VP
2/R1] sin2(o t) dt

PAVG = ½ VP
2 / R1

= VEFF
2 / R1, since VEFF = VP / S2 

In general,

PAVG = VEFF IEFF

0

T

0

T

 Says that Effective Values of a sinusoid produce
average power equivalent to comparable DC values
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Resistive Circuits with Steady State Sources
 In general, can perform the same analysis with any 

resistive network

vs(t) = Vp sin(  t)

Voltage Divider – From before:









R1

R2 Vo = ?

I1vs(t)








I1 R1 + I1 R2 – Vs = 0

I1 = Vs / (R1 + R2)

Then:  

V1 = I1 R1,  V2 = I1 R2

VO =  VS R2 / (R1 + R2)

Inserting the time-varying source:

vo(t) = Vp [R2 / (R1 + R2)] sin(o t) 

PAVG = VEFF IEFF

= ½ Vp [R2 / (R1+R2)]  [Vp / (R1+R2)]

PAVG = ½ VP
2 [R2 / (R1 + R2)2] 
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Introduction to Steady State (AC) Analysis
 Sinusoidal Sources

• Why are sinusoids important?
 Reason #1:  Our electrical grid works on sinusoidal power

– Famous shoot-out between Nikola Tesla and Thomas Edison,                     
1893 Worlds Fair in Chicago (Tesla won, but died a pauper…)

In the USA:
f = 60 Hz

VEFF = 120V
VP = 170V

Images from Wikipedia
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Introduction to Steady State (AC) Analysis
 Sinusoidal Sources (Continued)

• Why are sinusoids important (Cont.)?
 Reason #2:  Convenient representation in the Frequency Domain

• Define phasors:

t

v(t) =  VP cos(Ot + O)

VP

T
-VP



VP


O

O

Time Domain Frequency Domain

Phasor form:  V() =  VP O

Magnitude

Angle

If:   v(t) =  VP cos(Ot + O)

F() =  Mag Angle

 Has connection with Complex Number Analysis…  More on this later
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Introduction to Steady State (AC) Analysis
 Sinusoidal Sources (Continued)

• Why are sinusoids important (Cont.)?
 Reason #3:  Any periodic waveform can be represented as an infinite 

sum of sinusoids, with frequencies that are multiples of the fundamental 
frequency O  Fourier Series

– For any periodic waveform V(t), with fundamental frequency O

– The coefficients En are given by:

t

v(t) =   En e(jnot)  , where j = S -1 
n=-h

+h

T O = (2 ) / T

En = 1/T f V(t)  e-jnot dt
-T/2

T/2

v(t) 

 n0 are the harmonic frequencies of v(t)
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Introduction to Steady State (AC) Analysis
 Sinusoidal Sources (Continued)

• Why are sinusoids important (Cont.)?
 Example:  Fourier Series of a Square Wave

where En =  (2VP / n) sin(n / 2)



2VP / 

O

Time Domain Frequency Domain

t
VP

VP
O

OO

OO O O

O O

V(t) =   En e(jnot) 
n=-h

+h

T O = (2 ) / T

 Notice that only the odd harmonics of v(t) are present 
in this particular example…

where j = S -1 
n=-h

+h
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Introduction to Steady State (AC) Analysis
 More generally, use the Fourier Transform

• For a periodic function v(t) with period T, the Fourier Transform 
is defined as:

• Some important Transforms




F [v(t)]  =  V(j)  =  f v(t)  ejt dt
h



VP 

OO

t

v(t) =  VP cos(Ot)

VP

-VP

where j = S -1 
-h

VP 

V(j)

v(t) =  VP sin(Ot)



VP 

O

O

t
VP

-VP

VP 

V(j)

 Generally, we will ignore the negative frequency space…



Basic Electronics – Special Lecture for TIPP 2011 12
Gary Drake, Argonne National Lab – Session 2

Introduction to Steady State (AC) Analysis
 Fourier Transform Properties

• For a periodic function v(t) with period T, the Fourier Transform 
is defined as:

• The Inverse Fourier Transform is given as: 

• An important Transform property that we will use:

F [v(t)]  =  V(j)  =  f v(t)  ejt dt
h

F [d/dt v(t)]  =  j V(j)

where j = S -1 
-h

F-1 [V(j)]  =  v(t)  =  1/(2 f V(j)  ejt d
h

-h

 Fourier Transforms generally generate Complex Numbers…
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Introduction to Steady State (AC) Analysis
 A Review of Complex Numbers

• For

• Think of Complex Plane

• These are related to Phasors

Phasor form:  F(j) =  F(jw)      

F(j) =  aREAL + j bIMAG

F(j) =  Mag Angle

= w aREAL
2 + bIMAG

2

 =  tan-1 [bIMAJ / aREAL]

IMAG

REAL


F(j) F(j)

a

b
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Frequency Domain Analysis
 Basic Principles

• We will generally use sinusoidal excitation to evaluate the 
performance of circuits, and sweep the frequency over a range of
interest

• In general, when energy storage elements are involved,          
we will calculate circuit response in the frequency domain

• Use Complex Analysis  REAL & IMAG Phasor forms
• Use Fourier Transforms

t
VP

T
-VP

Log 
VP

Log 
O

O

Time Domain Frequency DomainMagnitude

Angle

O fO = 2  / T



Basic Electronics – Special Lecture for TIPP 2011 15
Gary Drake, Argonne National Lab – Session 2

Frequency Domain Analysis
 Capacitors Revisited

 Inductors Revisited

i(t) = C dv(t) / dt

I(j)  =  j C V(j)

ZC(j)  =  V(j) / I(j)  =  1 / (j C)

Log 

20 Log | ZC |

v(t) = L di(t) / dt

V(j)  =  j L I(j)

ZL(j)  =  V(j) / I(j)  =  j L

Log 

ZC

-90 

Log 

20 Log | ZL |

Log 

ZL

+90 

F [i(t)]  =  F [ C dv(t) / dt ]

F [v(t)]  =  F [ L di(t) / dt ]
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Frequency Domain Analysis
 Example 1 – Simple RC Circuit

• First, express vi(t) in complex form

vi(t) =  VP cos(Ot)

Phasor form:  Vi(j) =  VP 

Vi(j)   =   VP F(j) =  Mag Angle

Mag = w a2 + b2

Angle =  tan-1 [b / a]
IMAG

REAL

vO





R1

vi

vi (t) = Vp cos(  t)

C1

vO (t) = ?

VP

F(j) =  a + j b
IMAG

REALa

b



Complex Numbers

Phasor Notation:
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• Find VO(j) using Kirchoffs’
Voltage Law

Frequency Domain Analysis
 Example 1 (Cont.)

• Next, express C1 as an 
impedance in complex form

ZC1(j) = 1 / ( j  C1)

vO





R1

vi

vi (t) = Vp cos(  t)

C1

I1 R1 +  I1 ZC1(j) – Vi (j) = 0
I1



 Solution  Voltage Divider:
Vi (j) ZC1(j)

VO(j)  =
R1 + ZC1(j)

Vi (j) [ 1 / ( j C1) ]
VO(j)  =

R1 + [ 1 /  (j  C1) ]
Rearrange, using complex algebra:

Vi (j)
VO(j)  =

j  R1 C1 + 1
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• Next, express in Phasor Form

Frequency Domain Analysis
 Example 1 (Cont.)

vO





R1

vi

vi (t) = Vp cos(  t)

C1





Vi (j)
VO(j)  =

j  R1 C1 + 1

VP 0
=

e ( R1 C1)2 + 1 tan-1 [  R1 C1 ]

VP
=

e ( R1 C1)2 + 1

 tan-1 [  R1 C1 ]

Solution:

VO(j)  = VP

e ( R1 C1)2 + 1
 tan-1 [  R1 C1 ]

vO(t)  = VP

e ( R1 C1)2 + 1
cos ( o t  tan-1 [  R1 C1 ]
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Frequency Domain Analysis
 Example 1 (Cont.)

• Try some numbers
vO





R1

vi

vi (t) = Vp cos(  t)

C1




vO(t)  =

VP

e ( R1 C1)2 + 1

cos ( o t  tan-1 [ ( R1 C1 ]

a) Let R1 = 1 K, C1 = 1 F, 
VP = 1V, o = 10 rad/sec

Solution:  vO(t)  y 1 cos (o t – 0o)

b) Let R1 = 1 K, C1 = 1 F, 
VP = 1V, o = 1000 rad/sec  X100

Solution:  vO(t)  =  0.707 cos (o t – 45o)

c) Let R1 = 1 K, C1 = 1 F, 
VP = 1V, o = 100,000 rad/sec  X 10,000

Solution:  vO(t)  =  0.099 cos (o t – 84.2o)

Almost no change  vo(t) y vi(t)

Moderate change  vo(t) decreasing

Big change  vo(t)  0

We could plug in numbers all day long, but let’s find a better way…
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Frequency Domain Analysis
 A useful tool to aid in analyzing circuits in the frequency domain is 

the concept of a Transfer Function
• Suppose have a network that contains R’s, L’s, C’s and even transistors
• Suppose have a single input F(j) (called a Forcing Function)

 Could be either a voltage or a current
• Suppose have a single output variable of interest E(j) that responds in 

some way to the input
 Could also be either a voltage or a current

• Denote the network as H(j)

• Then

F(j)





H(j) E(j)





H(j)  =
E(j)

F(j)
=

Output of Interest

Forcing Function

We will use this
concept extensively
in Frequency Domain
Analysis
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Frequency Domain Analysis
 Back to Example 1:

• Back to Frequency Domain
vO





R1

vi C1




vO(t)  =

VP

e ( R1 C1)2 + 1

cos ( o t  tan-1 [ ( R1 C1 ]

VO(j)  =
Vi(j)  

e ( R1 C1)2 + 1

 tan-1 [ ( R1 C1 ]

To find general solution, plot Vo(j) / Vi(j) Transfer Function

=
1  

e ( R1 C1)2 + 1

 tan-1 [ ( R1 C1 ]
VO(j)

Vi(j)
=  Mag Angle

 Phasor Form

 Now, plot   Vo / Vi vs. ,  and   Vo / Vi vs. 

(Actually, plot  20 Log  Vo / Vi vs.  Log ,  and   Vo / Vi vs. Log )

Output (j)

Input (j)
 H(j)  =

 Called a Bode Plot

R1 = 1 K, C1 = 1 F
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Frequency Domain Analysis
 Example 1 (Cont.)

• Plotting Transfer Functions vO





R1

vi C1





=
1  

e ( R1 C1)2 + 1

 tan-1 [ ( R1 C1 ]
VO(j)

Vi(j)
H(j)  =

H(j)  = 
1  

e ( R1 C1)2 + 1

H(j)  =  tan-1 [ ( R1 C1 ]

Log 

20 Log | H(j) | db

     









Log 

H(j) o

     










R1 = 1 K, C1 = 1 F
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Frequency Domain Analysis
 Example 1 (Cont.)

• Examining Bode Plots for features vO





R1

vi C1




=

1  

e ( R1 C1)2 + 1

 tan-1 [ ( R1 C1 ]
VO(j)

Vi(j)
H(j)  =

Log 

20 Log | H(j) | db

     







 Log 

H(j) o

     










At critical frequency,
see inflection point

Response 
starts out flat

Response 
falls at 
-20 db/decade

What is that frequency?
 = 1 / R1 C1

 Called the “pole” frequency

At critical frequency,
see half-way point

Response 
starts out flat

Response 
ends flat, 
with -90o

phase shift 

What is that frequency?
 = 1 / R1 C1

 Again, the “pole” frequency
 Actual:  3 db  Actual:  45 o

R1 = 1 K, C1 = 1 F
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Frequency Domain Analysis
 Example 1 (Cont.)

• General Guidelines for Bode Plots           
(Note:  The following is true ONLY for single 
pole circuits (1 energy storage element)

vO





R1

vi C1





Log 

20 Log | H(j) | db

     







 Log 

H(j) o

     










Straight line 
starts out flat
at 0 db

Straight line 
falls at 
-20 db/decade

 = 1 / R1 C1

Inflection points at:

Straight line 
starts out flat
at 0 o

Straight line 
ends flat, 
with -90o

phase shift 
 =  0.1 / R1 C1

Inflection point at:

Actual curve is -3 db down
from intersection of the
two straight lines

 =   10 / R1 C1
Curve = -45 o at:
 = 1 / R1 C1

R1 = 1 K, C1 = 1 F
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Frequency Domain Analysis
 Example 1 (Cont.)

• This configuration is known as a                
“Low-Pass Filter”
 Low frequencies are passed with 0 db 

attenuation ( Gain = 1)
 High frequencies are attenuated
 Filter frequency = pole frequency                      

vO





R1

vi C1





Log 

20 Log | H(j) | db

     







 Log 

H(j) o

     










 You can create Bode Plots almost by inspection !!!

o = 1 / R1 C1

R1 = 1 K, C1 = 1 F
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• Insert expression for 
impedance of an inductor:

• Transfer Function:

Frequency Domain Analysis
 Example 2 – Simple RL Circuit

• Find VO(j) using                                         
Kirchoffs’ Voltage Law                             
 Voltage Divider

ZL1(j) =   j  L1

I1 R1 +  I1 ZL1(j) – Vi (j) = 0

Vi (j) ZL1(j)
VO(j)  =

R1 + ZL1(j)

Vi (j) j  L1
VO(j)  =

R1 + j  L1

 L1 / R1 

e ( L1 / R1)2 + (1)2


=

VO(j)

Vi(j) tan-1 [ ( L1 / R1 ]

vO





R1

vi

vi (t) = Vp cos(  t)

L1

vO (t) = ?

I1





Denominator is ~ the same as before
 Have a pole at  = R1 / L1

Vi (j) j  L1 / R1
=

1 + j  L1 / R1

Now have frequency content in the numerator
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 Example 2 (Cont.)
• Try some numbers:

Frequency Domain Analysis

H(j)  = 

H(j)  =  tan-1 [ ( L1 / R1 ]

     

Log 

20 Log | H(j) | db









Log 

H(j) o

     









Let R1 = 100 , L1 = 100 mH
vO





R1

vi

vi (t) = Vp cos(  t)

L1



 L1 / R1 

e ( L1 / R1)2 + (1)2


=

VO(j)

Vi(j) tan-1 [ ( L1 / R1 ]

 L1 / R1 

e ( L1 / R1)2 + (1)2

o = R1 / L1 = 1000 rad/sec
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Log 

20 Log | H(j) | db









Frequency Domain Analysis
 Example 2 (Cont.)

• Examining Bode Plots for features

At critical frequency,
see inflection point

Response 
ends flat

Response 
rises at 
+20 db/decade

What is that frequency?
 = R1 / L1

 It’s a “pole” frequency

At critical frequency,
see half-way point

Response 
starts out flat
With +90o

Phase shift

Response 
ends flat 

What is that frequency?
 = 1 / R1 C1

 Again, the “pole” frequency
 Actual:  3 db  Actual:  45 o

vO





R1

vi L1




 L1 / R1 

e ( L1 / R1)2 + (1)2


=

VO(j)

Vi(j) tan-1 [ ( L1 / R1 ]

Log 

H(j) o
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 Example 2 (Cont.)
• This configuration is known as a                

“High-Pass Filter”
 High frequencies are passed with 0 db 

attenuation ( Gain = 1)
 Low frequencies are attenuated
 Filter frequency = pole frequency
 Also has a Zero at 0 frequency

     

Log 

20 Log | H(j) | db









Frequency Domain Analysis

vO





R1

vi

vi (t) = Vp cos(  t)

L1





Log 

H(j) o

     









o = R1 / L1
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 General Features of Transfer Functions & Bode Plots
• For a general transfer function H(j), express as:

• The denominators give the Poles of the Transfer Function
 Magnitude changes by 20 db/decade
 Phase lag  phase changes by 90o

• The numerators give the Zeros of the Transfer Function
 Magnitude changes by 20 db/decade
 Phase Lead  Phase changes by 90o

Frequency Domain Analysis

Complex
Numbers

Pole

A + jB
=

VO(j)

Vi(j)

Log 

H(j) o

     










e (G / F)2 + (1)2

=
tan-1 [ G / F ]F + jG

H(j)  =
1 + j B/A 

=
1 + j G/F

A

F

e (B / A)2 + (1)2

     

Log 

20 Log | H(j) | db









tan-1 [ B / A ]A

F

Where G/F = 1

1 + j B/A
Form Phasors – Magnitude & Phase

Where B/A = 1

Pole

Zero

Zero
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 General Features of Transfer Functions & Bode Plots (Cont.)
• Bandwidth

 Generally concerned with points in frequency where the response begins to fall off

 Consider a typical amplifier

• The pass band is defined as the range of frequencies            
where the response is flat

Frequency Domain Analysis

Pole

     

Log 

20 Log | H(j) | db









Pole

 Look for – 3db points

 For this example, 
the Bandwidth would be
stated as: 
100 rad/sec to 10K rad/sec
(16 Hz to 1600 Hz)  

 Exercise:  Suppose that  stereo has a frequency response 
of 20 Hz to 20 KHz, and a maximum gain of 30 db.
Can you draw the frequency plot?
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Filters
 Analog Filters

• Many types
• Most use “active” components (i.e. op amps), and have Gain
• A few examples:

           

Log 

20 Log | H(j) | db







Log 

20 Log | H(j) | db









Pass band

     

Log 

20 Log | H(j) | db









Notch

     

Log 

20 Log | H(j) | db









Integrator

3-pole Low Pass Filter
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Aperiodic Signal Sources
 Aperiodic Sources

• Impulse

• Step

• Exponential

• For aperiodic signals,               
 Laplace Transform

• Two important properties:

L [v(t)]  =  V(s)  =  f v(t)  e-st dt
h

v(t) = Vp (t  tO)

v(t) = Vp u(t  tO)

tO

tO

tO
t

t

t

VP

VP

VP

L -1[V(s)]  =  v(t)  =  f V(s)  est ds
C+jh

Cjh

-h

L [d/dt v(t)]  =  s V(s)   v(0)
t

L [fv()  d ]  =   V(s) / s
0

where s =  a + j

v(t) = Vp ea(tto) u(tto)
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Aperiodic Signal Sources 
 Aperiodic Sources

• Impulse

• Step

• Exponential

L [v(t)]  =  Vpv(t) = Vp (t)

v(t) = Vp u(t)

v(t) = Vp eat u(t)

0

0

0
t

t

t

VP

VP

VP

Log s
VP

L [v(t)]  =  Vp / s

Log s
VP

L [v(t)]  =  Vp / (s + a)

Log s
VP / a

Time Domain Frequency Domain

a
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Aperiodic Signal Sources
 What about Impedances ZC and ZL?

• Replace j s
• Capacitors Revisited

• Inductors Revisited

i(t) = C dv(t) / dt

I(s)  =  s C V(s)

ZC(s)  =  V(s) / I(s)  =  1 / (s C)

v(t) = L di(t) / dt

V(s)  =  s L I(s)

ZL(s)  =  V(s) / I(s)  =  s L

L [i(t)]  =  L [ C dv(t) / dt ]

L [v(t)]  =  L [ L di(t) / dt ]

C

L
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Aperiodic Signal Sources
 Recall RC circuit





R1

C1 Vo

i1Vi

 







t = 0

VC1

VR1





R1

C1 vo(t)

i1vi(t)











vC1

vR1

Replace DC source
and switch with
Aperiodic source
with step function 

Vi (s) ZC1(s)
VO(s) =

R1 + ZC1(s)

Replace j with s Laplace Transform

L [VP u(t)]  =  Vp / s

VP
=

s (R1 s C1 + 1)

ZC1(s) = 1 / (s C1)

VP
=

s 

VP [ 1 / R1 C1]  


[R1 s C1 + 1]

L -1[VO(s)]  =  VP [ 1 – e –t/R1C1] u(t)

VP
=

s 

VP


s + R1 C1

Partial fraction expansion  Easier, yes?... 
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Two Basic Circuit Principles
 Linearity

• If a system H is linear, and has response Eo to forcing function input Fi, such 
that:

then if the forcing function is multiplied by a constant factor K (a real 
number), the output responds as:

• Networks that contain resistors, capacitors, and inductors      
are linear networks

• Networks that contain semiconductor devices may or may not be linear
 Depends on how the semiconductors are biased or being used

Eo(j)  = H(j) Fi(j)

H(j) [ K Fi(j)]  = K Eo(j)

 More on this in the next session

F(j)




H(j) E(j)





K F(j)




H(j) K E(j)
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Two Basic Circuit Principles
 Superposition

• If any linear network contains several independent sources 
(voltage sources or current sources), the quantity of interest 
(voltage across a component or current through a component) 
may be calculated by analyzing the circuit with one source at a 
time, with the other sources made “dead”:
 Voltage sources are replaced by short circuits ( 0 impedance)
 Current sources are replaced by open circuits ( infinite impedance)

• The complete response then is obtained by adding together the 
individual responses 
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Two Basic Circuit Principles
 Superposition (Continued)

• Example:

 Then:

VS
(DC)


 H(j) Vo(j)





Vi(j)

IS
(DC)

VS
(DC)


 H(j) Vo1(j)





H(j) Vo2(j)





Vi(j)

H(j) Vo3(j)





IS
(DC)

Vo(j) = Vo1(j) + Vo2(j) + Vo3(j)

Will use this idea for analyzing amplifier circuits with DC & AC sources

1 2 3
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Time-Varying Circuits
 Concluding Remarks

• Background presented here is the basis for all 
of modern communications

How can you have 500 cable channels and mixed 
internet on a single coaxial cable?...        

Answer:  Because superposition works…

• It is also the primary method by which analog 
circuits are designed and analyzed


