Basic Electronics

Introductory Lecture Course for

Technology and Instrumentation in Particle Physics 2011

Chicago, Illinois
June 9-14, 2011
Presented By

Gary Drake

Argonne National Laboratory
Session 2

Session 2

Time-Varying Signals \& Circuits

Time-Varying, Periodic Sources

- Periodic Time-Varying Sources \rightarrow "Steady State"
- Sinusoidal

- Square Wave

- Triangle Wave

- Ramp

- Pulse Train

- Comb Function

\Rightarrow Can be Voltage Sources or Current Sources
\Rightarrow Depends on..... Source Impedance!
Basic Electronics - Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab - Session 2

Sinusoidal Sources

- Sinusoidal Sources
- Characterized by frequency $\omega(\omega=2 \pi f)$, phase ϕ, period $T(T=1 / f)$, and peak amplitude V_{p}

- Is the average value important?

$$
\mathrm{V}_{\mathrm{AVG}}=1 / \mathrm{T} \int_{0}^{\mathrm{T}} \mathrm{~V}_{\mathrm{O}}(\mathrm{t}) \mathrm{dt}=1 / \mathrm{T} \int_{0}^{\mathrm{T}} \mathrm{~V}_{\mathrm{P}} \sin (\omega \mathrm{t}) \mathrm{dt}=0 \quad \Rightarrow \text { No, not really... }
$$

- We often use the "Effective Value," or RMS

$$
\begin{aligned}
\mathrm{V}_{\mathrm{EFF}} & =\sqrt{1 / \mathrm{T} \int_{0}^{\mathrm{T}} \mathrm{v}_{\mathrm{O}}^{2}(\mathrm{t}) \mathrm{dt}}=\sqrt{1 / \mathrm{T} \int_{0}^{\mathrm{T}} \mathrm{~V}_{\mathrm{P}}^{2} \sin ^{2}(\omega \mathrm{t}) \mathrm{dt}} \\
& =\mathrm{V}_{\mathrm{P}} / \sqrt{2} \quad \Rightarrow \text { This IS useful... }
\end{aligned}
$$

Resistive Circuits with Steady State Sources

- Consider again a resistive network, but this time with a sinusoidal source

$$
\mathrm{v}_{\mathrm{s}}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \sin \left(\omega_{\mathrm{O}} \mathrm{t}\right)
$$

Just as before, we can use Kirchoff's Laws:
$\mathrm{i}_{1}(\mathrm{t}) \mathrm{R}_{1}-\mathrm{v}_{\mathrm{s}}(\mathrm{t})=0$
$\mathrm{i}_{1}(\mathrm{t})=\mathrm{v}_{\mathrm{s}}(\mathrm{t}) / \mathrm{R}_{1}$
$\mathrm{v}_{\mathrm{O}}(\mathrm{t})=\mathrm{v}_{\mathrm{S}}(\mathrm{t})$
What is the instantaneous power consumed by $\mathrm{R}_{\underline{1}}$?

$$
\begin{aligned}
p_{1}(t) & =v_{1}(t) i_{1}(t) \\
& =V_{p} \sin \left(\omega_{o} t\right)\left[V_{p} \sin \left(\omega_{o} t\right)\right] / R_{1} \\
& =\left[V_{p}^{2} / R_{1}\right] \sin ^{2}\left(\omega_{o} t\right)
\end{aligned}
$$

What is the average power consumed by R_{1} ?

$$
\begin{aligned}
\mathrm{P}_{\mathrm{AVG}} & =1 / \mathrm{T} \int_{0}^{\mathrm{T}} \mathrm{p}_{1}(\mathrm{t}) \mathrm{dt} \\
& =1 / \mathrm{T} \int_{0}^{\mathrm{T}}\left[\mathrm{~V}_{\mathrm{P}}^{2} / \mathrm{R}_{1}\right] \sin ^{2}\left(\omega_{0} \mathrm{t}\right) \mathrm{dt} \\
\mathrm{P}_{\mathrm{AVG}} & =1 / 2 \mathrm{~V}_{\mathrm{P}}^{2} / \mathrm{R}_{1} \\
& =\mathrm{V}_{\mathrm{EFF}}^{2} / \mathrm{R}_{1}, \text { since } \mathrm{V}_{\mathrm{EFF}}=\mathrm{V}_{\mathrm{P}} / \sqrt{2}
\end{aligned}
$$

In general,
$\mathrm{P}_{\mathrm{AVG}}=\mathrm{V}_{\mathrm{EFF}} \quad \mathrm{I}_{\mathrm{EFF}}$
\Rightarrow Says that Effective Values of a sinusoid produce average power equivalent to comparable DC values

Resistive Circuits with Steady State Sources

- In general, can perform the same analysis with any
resistive network

$\mathrm{v}_{\mathrm{s}}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \sin \left(\omega_{\mathrm{O}} \mathrm{t}\right)$

Voltage Divider - From before:

$$
\begin{aligned}
& \mathrm{I}_{1} \mathrm{R}_{1}+\mathrm{I}_{1} \mathrm{R}_{2}-\mathrm{V}_{\mathrm{s}}=0 \\
& \mathrm{I}_{1}=\mathrm{V}_{\mathrm{s}} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{I}_{1} \mathrm{R}_{1}, \mathrm{~V}_{2}=\mathrm{I}_{1} \mathrm{R}_{2} \\
& \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)
\end{aligned}
$$

Inserting the time-varying source:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}}(\mathrm{t}) & =\mathrm{V}_{\mathrm{p}}\left[\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right] \sin \left(\omega_{\mathrm{o}} \mathrm{t}\right) \\
\mathrm{P}_{\mathrm{AVG}} & =\mathrm{V}_{\mathrm{EFF}} \mathrm{I}_{\mathrm{EFF}} \\
& =1 / 2 \mathrm{~V}_{\mathrm{p}}\left[\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right]\left[\mathrm{V}_{\mathrm{p}} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right] \\
\mathrm{P}_{\mathrm{AVG}} & =1 / 2 \mathrm{~V}_{\mathrm{P}}^{2}\left[\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)^{2}\right]
\end{aligned}
$$

Introduction to Steady State (AC) Analysis

- Sinusoidal Sources
- Why are sinusoids important?
- Reason \#1: Our electrical grid works on sinusoidal power
- Famous shoot-out between Nikola Tesla and Thomas Edison, 1893 Worlds Fair in Chicago (Tesla won, but died a pauper...)

Basic Electronics - Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab - Session 2

Introduction to Steady State (AC) Analysis

- Sinusoidal Sources (Continued)
- Why are sinusoids important (Cont.)?
- Reason \#2: Convenient representation in the Frequency Domain

- Define phasors: $\mathrm{F}(\omega)=$ Mag Angle

If: $\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{P}} \cos \left(\omega_{\mathrm{O}} \mathrm{t}+\phi_{\mathrm{O}}\right) \quad$ Phasor form: $\mathrm{V}(\omega)=\mathrm{V}_{\mathrm{P}} / \phi_{\mathrm{O}}$
\Rightarrow Has connection with Complex Number Analysis... \Rightarrow More on this later

Gary Drake, Argonne National Lab - Session 2

Introduction to Steady State (AC) Analysis

- Sinusoidal Sources (Continued)
- Why are sinusoids important (Cont.)?
- Reason \#3: Any periodic waveform can be represented as an infinite sum of sinusoids, with frequencies that are multiples of the fundamental frequency $\omega_{0} \rightarrow$ Fourier Series
- For any periodic waveform $\mathrm{V}(\mathrm{t})$, with fundamental frequency ω_{O}

- The coefficients E_{n} are given by:

$$
E_{\mathrm{n}}=1 / \mathrm{T} \int_{-T / 2}^{\mathrm{T} / 2} \mathrm{~V}(\mathrm{t}) \mathrm{e}^{-j n \omega_{0} \mathrm{t}} \mathrm{dt}
$$

$\Rightarrow n \omega_{0}$ are the harmonic frequencies of $v(t)$

Introduction to Steady State (AC) Analysis

- Sinusoidal Sources (Continued)
- Why are sinusoids important (Cont.)?
- Example: Fourier Series of a Square Wave

Introduction to Steady State (AC) Analysis

- More generally, use the Fourier Transform
- For a periodic function $\mathrm{v}(\mathrm{t})$ with period T , the Fourier Transform is defined as:

$$
\mathscr{\mathscr { F }}[\mathrm{v}(\mathrm{t})]=\mathrm{V}(\mathrm{j} \omega)=\int \mathrm{v}(\mathrm{t}) \mathrm{e}^{-\mathrm{j} \omega \mathrm{t}} \mathrm{dt} \quad \text { where } \mathrm{j}=\sqrt{-1}
$$

- Some important Transforms
- $\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{P}} \cos \left(\omega_{\mathrm{O}} \mathrm{t}\right)$

- $\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{P}} \sin \left(\omega_{\mathrm{O}} \mathrm{t}\right)$

\Rightarrow Generally, we will ignore the negative frequency space...

Introduction to Steady State (AC) Analysis

- Fourier Transform Properties
- For a periodic function $\mathrm{v}(\mathrm{t})$ with period T , the Fourier Transform is defined as:

$$
\mathscr{F}^{\mathscr{F}}[\mathrm{v}(\mathrm{t})]=\mathrm{V}(\mathrm{j} \omega)=\int \mathrm{v}(\mathrm{t}) \mathrm{e}^{-\mathrm{j} \omega \mathrm{t}} \mathrm{dt} \quad \text { where } \mathrm{j}=\sqrt{-1}
$$

- The Inverse Fourier Transform is given as:

$$
\mathscr{F}^{\prime}[\mathrm{V}(\mathrm{j} \omega)]=\mathrm{v}(\mathrm{t})=1 /(2 \pi) \int \mathrm{V}(\mathrm{j} \omega) \mathrm{e}^{\mathrm{j} \omega \mathrm{t}} \mathrm{~d} \omega
$$

- An important Transform property that we will use:

$$
\mathscr{F}[\mathrm{d} / \mathrm{dt} \mathrm{v}(\mathrm{t})]=\mathrm{j} \omega \mathrm{~V}(\mathrm{j} \omega)
$$

\Rightarrow Fourier Transforms generally generate Complex Numbers...

Introduction to Steady State (AC) Analysis

- A Review of Complex Numbers
- For

$$
F(j \omega)=a_{\text {REAL }}+j b_{\text {IMAG }}
$$

- Think of Complex Plane

$$
\begin{aligned}
|\mathrm{F}(\mathrm{j} \omega)| & =\sqrt{\mathrm{a}_{\mathrm{REAL}}{ }^{2}+\mathrm{b}_{\mathrm{IMAG}}{ }^{2}} \\
\phi & =\tan ^{-1}\left[\mathrm{~b}_{\mathrm{IMAJ}} / \mathrm{a}_{\mathrm{REAL}}\right]
\end{aligned}
$$

- These are related to Phasors

$$
\begin{aligned}
\text { Phasor form: } & F(\mathrm{j} \omega)
\end{aligned}=|F(\mathrm{jw})| \angle \phi
$$

Frequency Domain Analysis

- Basic Principles
- We will generally use sinusoidal excitation to evaluate the performance of circuits, and sweep the frequency over a range of interest

- In general, when energy storage elements are involved, we will calculate circuit response in the frequency domain
- Use Complex Analysis \rightarrow REAL \& IMAG \rightarrow Phasor forms
- Use Fourier Transforms

Frequency Domain Analysis

- Capacitors Revisited

$$
\begin{aligned}
\mathrm{i}(\mathrm{t}) & =\mathrm{Cdv}(\mathrm{t}) / \mathrm{dt} \\
\mathscr{F}[\mathrm{i}(\mathrm{t})] & =\mathscr{F}[\mathrm{Cdv}(\mathrm{t}) / \mathrm{dt}] \\
\mathrm{I}(\mathrm{j} \omega) & =\mathrm{j} \omega \mathrm{C} \mathrm{~V}(\mathrm{j} \omega) \\
\mathrm{Z}_{\mathrm{C}}(\mathrm{j} \omega) & =\mathrm{V}(\mathrm{j} \omega) / \mathrm{I}(\mathrm{j} \omega)=1 /(\mathrm{j} \omega \mathrm{C})
\end{aligned}
$$

$20 \log \left|\mathrm{Z}_{\mathrm{C}}\right|$

- Inductors Revisited

$$
\begin{aligned}
\mathrm{v}(\mathrm{t}) & =\mathrm{L} \operatorname{di}(\mathrm{t}) / \mathrm{dt} \\
\mathscr{F}[\mathrm{v}(\mathrm{t})] & =\mathscr{F}[\mathrm{L} d \mathrm{~d}(\mathrm{t}) / \mathrm{dt}] \\
\mathrm{V}(\mathrm{j} \omega) & =\mathrm{j} \omega \mathrm{LI}(\mathrm{j} \omega) \\
\mathrm{Z}_{\mathrm{L}}(\mathrm{j} \omega) & =\mathrm{V}(\mathrm{j} \omega) / \mathrm{I}(\mathrm{j} \omega)=\mathrm{j} \omega \mathrm{~L}
\end{aligned}
$$

$20 \mathrm{Log}\left|\mathrm{Z}_{\mathrm{L}}\right|$

Frequency Domain Analysis

- Example 1 - Simple RC Circuit

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{i}}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \cos \left(\omega_{\mathrm{O}} \mathrm{t}\right) \\
& \mathrm{v}_{\mathrm{O}}(\mathrm{t})=?
\end{aligned}
$$

- First, express $\mathrm{v}_{\mathrm{i}}(\mathrm{t})$ in complex form

$$
\begin{aligned}
\mathrm{v}_{\mathrm{i}}(\mathrm{t}) & =\mathrm{V}_{\mathrm{P}} \cos \left(\omega_{\mathrm{O}} \mathrm{t}\right) \\
\left|\mathrm{V}_{\mathrm{i}}(\mathrm{j} \omega)\right| & =\mathrm{V}_{\mathrm{P}} \quad \xrightarrow{\square} \quad{ }_{\mathrm{V}_{\mathrm{P}}}^{\text {IMAG }} \text { REAL }
\end{aligned}
$$

Phasor form: $\mathrm{V}_{\mathrm{i}}(\mathrm{j} \omega)=\mathrm{V}_{\mathrm{P}} \angle 0$

Complex Numbers

$F(j \omega)=a+j b$

Mag $=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
Angle $=\tan ^{-1}[\mathrm{~b} / \mathrm{a}]$
Phasor Notation:
$F(j \omega)=$ Mag /Angle

Frequency Domain Analysis

- Example 1 (Cont.)

- Next, express C_{1} as an impedance in complex form

$$
\mathrm{Z}_{\mathrm{C} 1}(\mathrm{j} \omega)=1 /\left(\mathrm{j} \omega \mathrm{C}_{1}\right)
$$

- Find $\mathrm{V}_{\mathrm{O}}(\mathrm{j} \omega)$ using Kirchoffs' Voltage Law
$\mathrm{I}_{1} \mathrm{R}_{1}+\mathrm{I}_{1} \mathrm{Z}_{\mathrm{C} 1}(\mathrm{j} \omega)-\mathrm{V}_{\mathrm{i}}(\mathrm{j} \omega)=0$
Solution \rightarrow Voltage Divider:

$$
\begin{aligned}
& V_{o}(j \omega)=\frac{V_{i}(j \omega) Z_{C 1}(j \omega)}{R_{1}+Z_{C 1}(j \omega)} \\
& V_{O}(j \omega)=\frac{V_{i}(j \omega)\left[1 /\left(j \omega C_{1}\right)\right]}{R_{1}+\left[1 /\left(j \omega C_{1}\right)\right]}
\end{aligned}
$$

Rearrange, using complex algebra:

$$
V_{o}(j \omega)=\frac{V_{i}(j \omega)}{j \omega R_{1} C_{1}+1}
$$

Frequency Domain Analysis

- Example 1 (Cont.)

$$
\begin{aligned}
V_{o}(j \omega) & =\frac{V_{i}(j \omega)}{j \omega_{0} R_{1} C_{1}+1} \\
& =\frac{V_{P} \not 0}{\sqrt{\left(\omega_{0} R_{1} C_{1}\right)^{2}+1} \angle \tan ^{-1}\left[\omega_{0} R_{1} C_{1}\right]} \\
& =\frac{V_{P} \angle-\tan ^{-1}\left[\omega_{o} R_{1} C_{1}\right]}{\sqrt{\left(\omega_{0} R_{1} C_{1}\right)^{2}+1}}
\end{aligned}
$$

- Next, express in Phasor Form

Solution:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}(\mathrm{j} \omega)=\frac{\mathrm{V}_{\mathrm{P}}}{\sqrt{\left(\omega_{\mathrm{o}} \mathrm{R}_{1} \mathrm{C}_{1}\right)^{2}+1}} L-\tan ^{-1}\left[\omega_{\mathrm{o}} \mathrm{R}_{1} \mathrm{C}_{1}\right] \\
& \mathrm{v}_{\mathrm{O}}(\mathrm{t})=\frac{\mathrm{V}_{\mathrm{P}}}{\sqrt{\left(\omega_{\mathrm{o}} \mathrm{R}_{1} \mathrm{C}_{1}\right)^{2}+1}} \cos \left(\omega_{\mathrm{o}} \mathrm{t}-\tan ^{-1}\left[\omega_{\mathrm{o}} R_{1} C_{1}\right]\right.
\end{aligned}
$$

Frequency Domain Analysis

- Example 1 (Cont.)
- Try some numbers
$\mathrm{v}_{\mathrm{o}}(\mathrm{t})=\frac{\mathrm{V}_{\mathrm{P}}}{\sqrt{\left(\omega_{\mathrm{o}} \mathrm{R}_{1} \mathrm{C}_{1}\right)^{2}+1}} \cos \left(\omega_{\mathrm{o}} \mathrm{t}-\tan ^{-1}\left[\left(\omega_{\mathrm{o}} \mathrm{R}_{1} \mathrm{C}_{1}\right]\right.\right.$

a) Let $\mathrm{R}_{1}=1 \mathrm{~K} \Omega, \mathrm{C}_{1}=1 \mu \mathrm{~F}$,

$$
\mathrm{V}_{\mathrm{P}}=1 \mathrm{~V}, \omega_{\mathrm{o}}=10 \mathrm{rad} / \mathrm{sec}
$$

Solution: $\mathrm{v}_{\mathrm{o}}(\mathrm{t}) \approx \mathbf{1} \boldsymbol{\operatorname { c o s }}\left(\omega_{\mathrm{o}} \mathrm{t}-\mathbf{0}^{\circ}\right) \longleftarrow$ Almost no change $\rightarrow \mathrm{v}_{\mathrm{o}}(\mathrm{t}) \approx \mathrm{v}_{\mathrm{i}}(\mathrm{t})$
b) Let $\mathrm{R}_{1}=1 \mathrm{~K} \Omega, \mathrm{C}_{1}=1 \mu \mathrm{~F}$,

$$
\mathrm{V}_{\mathrm{P}}=1 \mathrm{~V}, \omega_{0}=1000 \mathrm{rad} / \mathrm{sec} \rightarrow \mathrm{X} 100
$$

Solution: $v_{0}(t)=0.707 \cos \left(\omega_{0} t-45^{\circ}\right) \longleftarrow$ Moderate change $\rightarrow \mathrm{v}_{\mathrm{o}}(\mathrm{t})$ decreasing
c) Let $\mathrm{R}_{1}=1 \mathrm{~K} \Omega, \mathrm{C}_{1}=1 \mu \mathrm{~F}$,

$$
\mathrm{V}_{\mathrm{P}}=1 \mathrm{~V}, \omega_{0}=100,000 \mathrm{rad} / \mathrm{sec} \rightarrow \mathrm{X} 10,000
$$

Solution: $\mathrm{v}_{\mathrm{o}}(\mathrm{t})=0.099 \cos \left(\omega_{0} \mathrm{t}-84.2^{\circ}\right) \longleftarrow$ Big change $\rightarrow \mathrm{v}_{\mathrm{o}}(\mathrm{t}) \rightarrow 0$
\Rightarrow We could plug in numbers all day long, but let's find a better way...

Frequency Domain Analysis

- A useful tool to aid in analyzing circuits in the frequency domain is the concept of a Transfer Function
- Suppose have a network that contains R's, L's, C's and even transistors
- Suppose have a single input $\mathrm{F}(\mathrm{j} \omega$) (called a Forcing Function)
- Could be either a voltage or a current
- Suppose have a single output variable of interest $\mathrm{E}(\mathrm{j} \omega)$ that responds in some way to the input
- Could also be either a voltage or a current
- Denote the network as $\mathrm{H}(\mathrm{j} \omega)$
- Then

$$
H(j \omega)=\frac{E(j \omega)}{F(j \omega)}=\frac{\text { Output of Interest }}{\text { Forcing Function }}
$$

\Rightarrow We will use this concept extensively in Frequency Domain Analysis

Frequency Domain Analysis

- Back to Example 1:

- Back to Frequency Domain

$$
v_{o}(t)=\frac{V_{P}}{\sqrt{\left(\omega_{0} R_{1} C_{1}\right)^{2}+1}} \cos \left(\omega_{o} t-\tan ^{-1}\left[\left(\omega_{o} R_{1} C_{1}\right]\right.\right.
$$

$\mathrm{V}_{\mathrm{o}}(\mathrm{j} \omega)=\frac{\mathrm{V}_{\mathrm{i}}(\mathrm{j} \omega)}{\sqrt{\left(\omega_{\mathrm{o}} \mathrm{R}_{1} \mathrm{C}_{1}\right)^{2}+1}}\left\lfloor-\tan ^{-1}\left[\left(\omega_{0} \mathrm{R}_{1} \mathrm{C}_{1}\right] \Rightarrow\right.\right.$ Phasor Form
To find general solution, plot $\mathrm{V}_{\underline{o}}(\mathrm{j} \omega) / \mathrm{V}_{\underline{\mathrm{i}}}(\mathrm{j} \omega) \rightarrow$ Transfer Function $\Rightarrow H(\mathrm{j} \omega)=\frac{\operatorname{Output}(\mathrm{j} \omega)}{\operatorname{Input}(\mathrm{j} \omega)}$

$$
\begin{aligned}
\frac{\mathrm{V}_{\mathrm{o}}(\mathrm{j} \omega)}{\mathrm{V}_{\mathrm{i}}(\mathrm{j} \omega)}= & \frac{1}{\sqrt{\left(\omega \mathrm{R}_{1} \mathrm{C}_{1}\right)^{2}+1}}<-\tan ^{-1}\left[\left(\omega \mathrm{R}_{1} \mathrm{C}_{1}\right]\right.
\end{aligned}=\text { Mag } \text { Angle } ~\left(\mathrm{~V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}} \mid \text { vs. } \omega \text {, and } / \mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}} \text { vs. } \omega\right. \text { Now, plot }
$$

(Actually, plot $20 \log \left|V_{0} / V_{i}\right|$ vs. $\log \omega$, and $/ V_{0} / V_{i}$ vs. $\log \omega$)
\Rightarrow Called a Bode Plot
Basic Electronics - Special Lecture for TIPP 2011
21
Gary Drake, Argonne National Lab - Session 2

Frequency Domain Analysis

- Example 1 (Cont.)
- Plotting Transfer Functions

Frequency Domain Analysis

- Example 1 (Cont.)
- Examining Bode Plots for features

$$
H(j \omega)=\frac{V_{0}(j \omega)}{V_{i}(j \omega)}=\frac{1}{\sqrt{\left(\omega R_{1} C_{1}\right)^{2}+1}} L-\tan ^{-1}\left[\left(\omega R_{1} C_{1}\right]\right.
$$

At critical frequency, see inflection point

What is that frequency?

$$
\omega=1 / R_{1} \mathrm{C}_{1}
$$

\Rightarrow Called the "pole" frequency
\Rightarrow Actual: -3 db
$\angle(j \omega)^{\circ}$

What is that frequency?

$$
\omega=1 / R_{1} \mathrm{C}_{1}
$$

\Rightarrow Again, the "pole" frequency
\Rightarrow Actual: -45°

Frequency Domain Analysis

- Example 1 (Cont.)
- General Guidelines for Bode Plots (Note: The following is true ONLY for single pole circuits (1 energy storage element)

$$
\omega=1 / \mathrm{R}_{1} \mathrm{C}_{1}
$$

Actual curve is -3 db down from intersection of the two straight lines
$\angle \mathrm{H}(\mathrm{j} \omega)^{\circ}$
Inflection points at:

$$
\begin{aligned}
& \omega=0.1 / R_{1} C_{1} \\
& \omega=10 / R_{1} C_{1}
\end{aligned}
$$

$$
\text { Curve }=-45^{\circ} \text { at: }
$$

$$
\omega=1 / \mathrm{R}_{1} \mathrm{C}_{1}
$$

Frequency Domain Analysis

- Example 1 (Cont.)
- This configuration is known as a "Low-Pass Filter"
- Low frequencies are passed with 0 db attenuation $(\rightarrow$ Gain = 1)

- High frequencies are attenuated
- Filter frequency = pole frequency

$$
\omega_{0}=1 / \mathrm{R}_{1} \mathrm{C}_{1}
$$

\Rightarrow You can create Bode Plots almost by inspection !!!

Frequency Domain Analysis

- Example 2 - Simple RL Circuit

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{i}}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \cos \left(\omega_{\mathrm{O}} \mathrm{t}\right) \\
& \mathrm{v}_{\mathrm{O}}(\mathrm{t})=?
\end{aligned}
$$

- Find $\mathrm{V}_{\mathrm{O}}(\mathrm{j} \omega)$ using Kirchoffs' Voltage Law
\rightarrow Voltage Divider

$$
I_{1} R_{1}+I_{1} Z_{L 1}(j \omega)-V_{i}(j \omega)=0
$$

$$
V_{o}(j \omega)=\frac{V_{i}(j \omega) Z_{L 1}(j \omega)}{R_{1}+Z_{L 1}(j \omega)}
$$

- Insert expression for impedance of an inductor:

$$
Z_{L 1}(j \omega)=j \omega L_{1}
$$

$$
V_{o}(j \omega)=\frac{V_{i}(j \omega) j \omega L_{1}}{R_{1}+j \omega L_{1}}=\frac{V_{i}(j \omega) j \omega L_{1} / R_{1}}{1+j \omega L_{1} / R_{1}}
$$

- Transfer Function:

Now have frequency content in the numerator

Frequency Domain Analysis

- Example 2 (Cont.)

- Try some numbers: Let $\mathrm{R}_{1}=100 \Omega, \mathrm{~L}_{1}=100 \mathrm{mH}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}}(\mathrm{j} \omega) \\
& \omega \mathrm{L}_{1} / \mathrm{R} 1 \quad \angle 90 \\
& \omega_{0}=\mathrm{R}_{1} / \mathrm{L}_{1}=1000 \mathrm{rad} / \mathrm{sec} \\
& |H(j \omega)|=\left[\frac{\omega L_{1} / R 1}{\sqrt{\left(\omega L_{1} / R_{1}\right)^{2}+(1)^{2}}}\right]
\end{aligned}
$$

$$
\angle H(j \omega)=90-\tan ^{-1}\left[\left(\omega_{\mathrm{o}} \mathrm{~L}_{1} / \mathrm{R}_{1}\right]\right.
$$

$20 \log \mid \mathrm{H}(\mathrm{j} \omega)$ db

$\angle \mathrm{H}(\mathrm{j} \omega)^{\circ}$

Frequency Domain Analysis

- Example 2 (Cont.)
- Examining Bode Plots for features
$\frac{\mathrm{V}_{\mathrm{O}}(\mathrm{j} \omega)}{\mathrm{V}_{\mathrm{i}}(\mathrm{j} \omega)}=\frac{\omega \mathrm{L}_{1} / R 1 \angle 90}{\sqrt{\left(\omega \mathrm{~L}_{1} / \mathrm{R}_{1}\right)^{2}+(1)^{2}} \quad \tan ^{-1}\left[\left(\omega_{\mathrm{o}} \mathrm{L}_{1} / \mathrm{R}_{1}\right]\right.}$

$20 \log |\mathrm{H}(\mathrm{j} \omega)| \mathrm{db}$

$\angle \mathrm{H}(\mathrm{j} \omega)^{\circ}$

$$
\omega=1 / R_{1} C_{1}
$$

\Rightarrow It's a "pole" frequency
\Rightarrow Actual: -3 db

$$
\Rightarrow \text { Again, the "pole" frequency }
$$

$$
\Rightarrow \text { Actual: }-45^{\circ}
$$

Frequency Domain Analysis

- Example 2 (Cont.)

- This configuration is known as a "High-Pass Filter"
- High frequencies are passed with 0 db attenuation (\rightarrow Gain = 1)

$\mathrm{v}_{\mathrm{i}}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \cos \left(\omega_{\mathrm{O}} \mathrm{t}\right)$
- Low frequencies are attenuated
- Filter frequency $=$ pole frequency $\omega_{0}=R_{1} / L_{1}$
- Also has a Zero at 0 frequency

$\angle \mathrm{H}(\mathrm{j} \omega)^{\circ}$

Frequency Domain Analysis

- General Features of Transfer Functions \& Bode Plots

- For a general transfer function $\mathrm{H}(\mathrm{j} \omega)$, express as:

$$
\begin{aligned}
& H(j \omega)=\frac{V_{0}(j \omega)}{V_{i}(j \omega)}=\frac{A+j B}{F+j G}=\frac{A}{F} \frac{1+j B / A}{1+j G / F}=\frac{A}{F} \frac{\sqrt{(B / A)^{2}+(1)^{2}} \frac{\tan ^{-1}[B / A]}{\sqrt{(G / F)^{2}+(1)^{2}}} \frac{\tan -1}{}[G / F]}{\operatorname{la}^{2}} \\
& \underset{\text { Complex }}{\text { Combers }} \longrightarrow \begin{array}{c}
1+\mathrm{j} \mathrm{B/A} \\
\text { Form }
\end{array} \longrightarrow \text { Phasors - Magnitude \& Phase }
\end{aligned}
$$

- The denominators give the Poles of the Transfer Function \Rightarrow Where G/F = 1
- Magnitude changes by -20 db/decade
- Phase lag \rightarrow phase changes by -90°
- The numerators give the Zeros of the Transfer Function \Rightarrow Where $B / A=1$
- Magnitude changes by +20 db/decade
- Phase Lead \rightarrow Phase changes by $+90^{\circ}$

$\log \omega$
$\angle \mathrm{H}(\mathrm{j} \omega)^{\circ}$

Gary Drake, Argonne National Lab - Session 2

Frequency Domain Analysis

- General Features of Transfer Functions \& Bode Plots (Cont.)
- Bandwidth
- Generally concerned with points in frequency where the response begins to fall off
\Rightarrow Look for - 3db points
- Consider a typical amplifier

\Rightarrow For this example, the Bandwidth would be stated as:
$100 \mathrm{rad} / \mathrm{sec}$ to 10 K rad/sec (16 Hz to 1600 Hz)
- The pass band is defined as the range of frequencies where the response is flat
\Rightarrow Exercise: Suppose that stereo has a frequency response of 20 Hz to 20 KHz , and a maximum gain of 30 db . Can you draw the frequency plot?

Filters

- Analog Filters
- Many types
- Most use "active" components (i.e. op amps), and have Gain
- A few examples:

$20 \log |\mathrm{H}(\mathrm{j} \omega)| \mathrm{db} \quad$ 3-pole Low Pass Filter

$20 \log |\mathrm{H}(\mathrm{j} \omega)| \mathrm{db}$

$20 \log |\mathrm{H}(\mathrm{j} \omega)| \mathrm{db}$

Aperiodic Signal Sources

- Aperiodic Sources
- Impulse $\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \delta\left(\mathrm{t}-\mathrm{t}_{\mathrm{O}}\right)$

- Step $v(t)=V_{p} u\left(t-t_{0}\right)$

- For aperiodic signals, \rightarrow Laplace Transform

$$
\mathscr{L}_{[\mathrm{v}(\mathrm{t})]}=\mathrm{V}(\mathrm{~s})=\int_{\infty} \mathrm{v}(\mathrm{t}) \mathrm{e}^{-\mathrm{st}} \mathrm{dt}
$$

$$
\mathscr{D}^{-1}[\mathrm{~V}(\mathrm{~s})]=\mathrm{v}(\mathrm{t})=\int_{\mathrm{C}-\mathrm{j} \infty}^{\mathrm{C}+\mathrm{j} \infty} \mathrm{~V}(\mathrm{~s}) \mathrm{e}^{s t} \mathrm{ds}
$$

$$
\text { where } s=a+j \omega
$$

- Two important properties:
- Exponential $\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \mathrm{e}^{-\mathrm{a}(\mathrm{t}-\mathrm{to})} \mathrm{u}\left(\mathrm{t}-\mathrm{t}_{0}\right)$

$\mathscr{L}_{[\mathrm{d} / \mathrm{dt} \mathrm{v}(\mathrm{t})]}=\mathrm{s} \mathrm{V}(\mathrm{s})-\mathrm{v}\left(0^{-}\right)$

$$
\mathscr{L}\left[\int_{\mathrm{v}}^{\mathrm{t}}(\lambda) \mathrm{d} \lambda\right]=\mathrm{V}(\mathrm{~s}) / \mathrm{s}
$$

Aperiodic Signal Sources

- Aperiodic Sources Time Domain
- Impulse $\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \delta(\mathrm{t})$

- Step

$$
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{p}} \mathrm{u}(\mathrm{t})
$$

- Exponential $v(t)=V_{p} e^{-a t} u(t)$

Frequency Domain

$$
\mathscr{L}_{[\mathrm{v}(\mathrm{t})]}=\mathrm{V}_{\mathrm{p}}
$$

$\mathscr{L}[\mathrm{v}(\mathrm{t})]=\mathrm{V}_{\mathrm{p}} / \mathrm{s}$

$$
\mathscr{L}_{[\mathrm{v}(\mathrm{t})]}=\mathrm{V}_{\mathrm{p}} /(\mathrm{s}+\mathrm{a})
$$

Aperiodic Signal Sources

- What about Impedances Z_{C} and Z_{L} ?
- Replace j $\omega \rightarrow$ s
- Capacitors Revisited

$$
\begin{aligned}
& \mathrm{i}(\mathrm{t})=\mathrm{Cdv}(\mathrm{t}) / \mathrm{dt} \\
& \mathscr{L}[\mathrm{i}(\mathrm{t})]=\mathscr{L}_{[\mathrm{Cdv}(\mathrm{t}) / \mathrm{dt}]}^{\mathrm{I}(\mathrm{~s})}= \\
&=\mathrm{s} \mathrm{C} \mathrm{~V}(\mathrm{~s}) \\
& \mathrm{Z}_{\mathrm{C}}(\mathrm{~s})=\mathrm{V}(\mathrm{~s}) / \mathrm{I}(\mathrm{~s})=1 /(\mathrm{s} \mathrm{C})
\end{aligned}
$$

- Inductors Revisited

$$
\begin{aligned}
\mathrm{v}(\mathrm{t}) & =\mathrm{L} \operatorname{di}(\mathrm{t}) / \mathrm{dt} \\
\mathscr{L}[\mathrm{v}(\mathrm{t})] & =\mathscr{L}[\mathrm{L} \operatorname{di}(\mathrm{t}) / \mathrm{dt}] \\
\mathrm{V}(\mathrm{~s}) & =\mathrm{sLI}(\mathrm{~s}) \\
\mathrm{Z}_{\mathrm{L}}(\mathrm{~s}) & =\mathrm{V}(\mathrm{~s}) / \mathrm{I}(\mathrm{~s})=\mathrm{s} \mathrm{~L}
\end{aligned}
$$

Aperiodic Signal Sources

- Recall RC circuit

Replace $j \omega$ with $s \rightarrow$ Laplace Transform

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{O}}(\mathrm{~s})=\frac{\mathrm{V}_{\mathrm{i}}(\mathrm{~s}) \mathrm{Z}_{\mathrm{C} 1}(\mathrm{~s})}{\mathrm{R}_{1}+\mathrm{Z}_{\mathrm{C} 1}(\mathrm{~s})}=\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{~s}\left(\mathrm{R}_{1} \mathrm{~s} \mathrm{C}_{1}+1\right)}=\underbrace{\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{~s}}-\mathrm{V}_{\mathrm{P}}\left[1 / \mathrm{R}_{1} \mathrm{C}_{1}\right]}_{\begin{array}{l}
\text { Partial fraction expansion }
\end{array}} \operatorname{DR}_{1} \mathrm{~s}_{1}+1]
\end{array}=\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{~s}\left[\mathrm{~V}_{\mathrm{O}}(\mathrm{~s})\right]=\mathrm{V}_{\mathrm{P}}\left[1-\mathrm{e}^{-\mathrm{t} / \mathrm{R} 1 \mathrm{C} 1}\right] \mathrm{u}(\mathrm{t})}-\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{~s}+\mathrm{R}_{1} \mathrm{C}_{1}}
$$

Two Basic Circuit Principles

- Linearity
- If a system H is linear, and has response E_{o} to forcing function input F_{i}, such that:

$$
\mathrm{E}_{\mathrm{o}}(\mathrm{j} \omega)=\mathrm{H}(\mathrm{j} \omega) \mathrm{F}_{\mathrm{i}}(\mathrm{j} \omega)
$$

then if the forcing function is multiplied by a constant factor K (a real number), the output responds as:

$$
\mathrm{H}(\mathrm{j} \omega)\left[\mathrm{K}_{\mathrm{i}}(\mathrm{j} \omega)\right]=\mathrm{K}_{\mathrm{o}}(\mathrm{j} \omega)
$$

- Networks that contain resistors, capacitors, and inductors are linear networks
- Networks that contain semiconductor devices may or may not be linear
- Depends on how the semiconductors are biased or being used
\Rightarrow More on this in the next session

Two Basic Circuit Principles

- Superposition
- If any linear network contains several independent sources (voltage sources or current sources), the quantity of interest (voltage across a component or current through a component) may be calculated by analyzing the circuit with one source at a time, with the other sources made "dead":
- Voltage sources are replaced by short circuits ($\rightarrow 0$ impedance)
- Current sources are replaced by open circuits (\rightarrow infinite impedance)
- The complete response then is obtained by adding together the individual responses

Two Basic Circuit Principles

- Superposition (Continued)
- Example:

- Then: $\quad \mathrm{V}_{\mathrm{o}}(\mathrm{j} \omega)=\mathrm{V}_{\mathrm{o} 1}(\mathrm{j} \omega)+\mathrm{V}_{\mathrm{o} 2}(\mathrm{j} \omega)+\mathrm{V}_{\mathrm{o} 3}(\mathrm{j} \omega)$
\Rightarrow Will use this idea for analyzing amplifier circuits with DC \& AC sources
Basic Electronics - Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab - Session 2

Time-Varying Circuits

- Concluding Remarks
- Background presented here is the basis for all of modern communications
- How can you have 500 cable channels and mixed internet on a single coaxial cable?...

Answer: Because superposition works...

- It is also the primary method by which analog circuits are designed and analyzed

