Basic Electronics

Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011

Chicago, Illinois
June 9-14, 2011

Presented By

Gary Drake
Argonne National Laboratory

Session 3
Session 3

Semiconductor Devices
Preliminary Concepts

- Resistivity Revisited

\[R = \frac{\rho \cdot L}{A} \]

\[\rho = \frac{1}{\sigma} = \frac{2 \text{ m}}{(n \cdot q \cdot \tau)} \]

Units: Kg-meter\(^3\) / Coulomb-sec

\[= \text{Ohm-meter} \] (or often, Ohm-cm)

⇒ Only depends on physical properties

Resistivity of Materials

<table>
<thead>
<tr>
<th>Metals</th>
<th>Semiconductors</th>
<th>Insulators</th>
</tr>
</thead>
<tbody>
<tr>
<td>10(^{-6}) to 10(^{-4}) Ω-cm</td>
<td>10(^{-3}) to 10(^{+8}) Ω-cm</td>
<td>> 10(^{+8}) Ω-cm</td>
</tr>
<tr>
<td>– Upper electron shells nearly empty</td>
<td>– Partially filled shells</td>
<td>– Completely filled shells</td>
</tr>
<tr>
<td></td>
<td>– Bonds covalently to form weakly stable structures</td>
<td></td>
</tr>
</tbody>
</table>
Preliminary Concepts

- Semiconductors on the Periodic Chart
Preliminary Concepts

- Atomic Structure of Silicon – Group IVA
 - Electron structure

 \[
 \text{Silicon:} \quad 1S^2 \ 2S^2 \ 2P^6 \ 3S^2 \ 3P^2 \\
 Z = 14
 \]

 - Intrinsic silicon bonds covalently in a crystalline structure, sharing electrons with neighbors to completely fill the 3P shell.

 - Each line is an electron in the 3rd shell.

 - Bonds can break from thermal energy or E field to give mobile charge.
Preliminary Concepts

- Adding Impurities into Silicon
 - Consider Phosphorous – Group VA

 Phosphorous: 1S2 2S2 2P6 3S2 3P3

 Z = 15

 - **Represented as:** P

 - **Introduction into Silicon Crystalline Structure**

 ✧ Extra electron is weakly bound, and easily removed

 $\text{Si} = \text{Si} = \text{Si} = \text{Si} = \text{P} = \text{Si} = \text{Si} = \text{Si}$

 $\overset{\text{Donor Impurity}}{\rightarrow}$

Gary Drake, Argonne National Lab – Session 3
Preliminary Concepts

- Adding Impurities into Silicon (Continued)
 - Consider Aluminum = Group IIIA

Aluminum: 1S2 2S2 2P6 3S2 3P1 5 empty positions
Z = 13

3 / 8 positions filled

- Represented as:
 - Al

Each line is an electron in the 3rd shell

- Introduction into Silicon Crystalline Structure
 - Missing electron is weakly accepted into lattice
 - Al
 - 5 empty positions
 - 3 / 8 positions filled
 - Concept of mobile “holes”
 - When electron is captured, hole moves from location to location
Preliminary Concepts

Adding Impurities into Silicon (Continued)

- Introduction of impurities into intrinsic silicon is called "Doping"

- Amount of doping characterized by concentration of charge carriers
 - \(n_i \) = # intrinsic carriers in pure silicon / unit volume \(\approx 1.4 \times 10^{10} / \text{cm}^3 \)
 - \(N_d \) = # donor atoms / unit volume
 - \(N_a \) = # acceptor atoms / unit volume

- **N-type Silicon**
 - \(N_d - N_a >> n_i \)
 - High concentration of donor atoms
 - Provides excess electrons to lattice as mobile charge carriers

- **P-type Silicon**
 - \(N_a - N_d >> n_i \)
 - High concentration of acceptor atoms
 - Provides excess holes to lattice as mobile charge carriers

@ 300° K
Preliminary Concepts

- Adding Impurities into Silicon (Continued)
 - How to make use of mobile charge carriers
 - Bonds can be broken by:
 - Application of an Electric Field
 » Basic principle of how integrated circuits work
 - Application of Light → Photons impart energy
 » Basic principle of how photo cells work
 » Use reverse principle for light emitting diodes (LEDs)
 - Heat → Kinetic Energy
 » Basic use for temperature sensors
 » Generally a bad property for semiconductors…
PN Junctions

- Forming a PN Junction

 - Take P-type & N-type silicon, and butt them together

 ![Diagram](image)

 - When butt together, opposite charges attract
 - Mobile electrons from N-type silicon attracted to vacancies in P-type
 - Mobile holes from P-type silicon attracted to vacancies in N-type

 ⇒ *Results in Acceptor & Donor atoms being ionized*
 ⇒ *Creates space charge regions*
 ⇒ *Results in the creation of a built-in Electric Field*
PN Junctions

- Biasing a PN Junction

 - Suppose apply a voltage to the PN Junction

 - Positive terminal of V_{BIAS} attracts electrons
 - Negative terminal of V_{BIAS} attracts holes
 - Makes space charge region bigger
 - Increases E field across junction
 - Reduces ability of current to flow across junction
 ⇒ *Reverse Bias*

 - Now suppose we reverse the polarity of V_{BIAS}

 - Positive terminal of V_{BIAS} adds holes to P region
 - Negative terminal of V_{BIAS} adds electrons to N
 - Makes space charge region smaller
 - Decreases E field across junction
 - Enhances ability of current to flow across junction
 ⇒ *Majority Carrier:*
 - Holes recombine with ionized acceptors
 - Electrons recombine with ionized donors
PN Junctions

- **Biasing a PN Junction (Continued)**
 - At a critical bias, space charge region disappears
 - Built-in E field across junction is gone
 - Now charge carriers provided by V_{BIAS} can move across PN junction
 - **Forward Bias → Conduction**
 - Each new electron/hole pair pushes existing pair out of bulk

 - How much voltage is required to reach forward bias?
 - Answer: Related to how much energy is required to remove bound electrons (or holes) from their nuclei
 - Work Function
 - Depends on doping concentrations
 - Depends on intrinsic carrier concentration
 - Depends on temperature
 - $\phi = kT/q \ln \left[\frac{N_d N_a}{n_i^2} \right]$
Diodes

- Physical Description
 - Essentially a simple PN Junction
 - Symbol

- IV Characteristics
 - Shockley Diode Equation

 \[I_D = I_S \left[e^{-\frac{k V_D}{(n q T)}} - 1 \right] \]

 Where:
 - \(I_S \) = Reverse Saturation Current
 - \(k \) = Boltzman Constant (1.38E-23 J/K)
 - \(T \) = Temperature (° Kelvin)
 - \(q \) = charge (1.6E-19 C/e⁻)
 - \(n \) = quality factor, 1 ≥ n ≥ 2

 \[V_T = \frac{k T}{q} = 25.8 \text{ mV @ room temp} \]

 = Thermal Voltage

 ⇒ In most diodes, \(I_S \) is very small

⇒ Nonlinear IV relationship
Diodes

- IV Characteristics (Cont.)
 - Many diodes exhibit reverse breakdown \rightarrow Zener Effect
 - Typical values: $V_Z \sim 5V – 15V$
 - Sometimes used for voltage references

- Ideal Characteristics
 - Sometimes, it is useful to use a linear approximation
 - Typical values $V_F \sim 0.6V – 0.7V$ for Si
 - Looks like Voltage Source!
 - Approximates current flow in one direction only
 - Looks like a switch!
Diodes

- Circuits
 - Rarely use Shockley equation in hand calculations
 - SPICE uses Shockley equation or behavioral models
 - Gives accurate solution
 - For hand calculations – 2 methods:
 - Use linear approximation
 - Use graphical techniques
Diodes

- **Circuits (Continued)**

 - **Example – Use Linear Approximation:**

 ![Diode Circuit Diagrams]

 If diode is ON:

 \[V_O = V_F \]

 Valid for: \(I_1 > 0 \)

 Or: \(V_S > V_F \left[1 + \left(\frac{R_1}{R_2} \right) \right] \)

 ⇒ **Called a Clamp Circuit**

 If diode is OFF:

 \[V_O = \frac{V_S R_2}{R_1 + R_2} \]

 Valid for: \(V_O < V_F \)

 Or: \(V_S < V_F \left[1 + \left(\frac{R_1}{R_2} \right) \right] \)
Diodes

- Circuits (Continued)
 - Example – Use Graphical Methods → Load Line Analysis:
 - Take Diode out – Calculate open-circuit voltage → $I_D = 0$
 - Then replace diode with short – Calculate short circuit current → $V_D = 0$
 - Plot on diode IV graph → Find Operating Point Q

\[I_D = 0 \]
\[V_D = 0 \]
\[I_{SC} = \frac{V_S}{R_2} \]
\[V_{OC} = V_S \]
\[V_O = I_{DQ} R_2 \]

Don’t always have the IV curves for particular diodes...
Field Effect Transistors

- **Introduction**
 - Field Effect Transistors (FETs) are 3-terminal devices, where the current flow between two of the terminals (Drain & Source) is controlled through the use of an electric field applied at the third terminal (Gate), which modulates a conduction channel between the two active terminals.
 - Current flow is achieved by drift currents through the channel
 - Charge carriers are majority carriers (p-type → holes, n-type → electrons)
 - Current flow is uni-directional
 - Several different kinds:
 - Metal Oxide Semiconductor FET (MOSFET)
 - Junction FET (JFET)
 - Metal Oxide Semiconductor FET (MESFET)
 - High Electron Mobility Transistor (HEMT)
 - Depleted FET (DEPFET)
 - (Many other variations…)

 ![Field Effect Transistor Diagram](image)

 We will focus on this today
 - Used extensively in HEP
 - Custom ASIC design!
MOSFETs

- Basic Construction
 - Begin with lightly-doped P-type substrate (could be N-type as well…)
 - Cover surface with layer of silicon dioxide (SiO2)
 - Like glass
 - Insulator \rightarrow Very high resistivity \rightarrow $\rho \sim 1E18 \ \Omega\cdot\text{cm}$

\Rightarrow Very Important Aspect!
MOSFETs

- Basic Construction (Continued)
 - Etch openings into the SiO₂ using hydrofluoric acid (HF)
 - Dissolves SiO₂ but not the silicon underneath
 - Diffuse donor impurities into substrate to make N-type implants
 - Heavy doping → N⁺
MOSFETs

- Basic Construction (Continued)
 - Add metal contacts
 - Applied using Sputtering or Evaporating Metal
 - Basic construction done
 - All process steps done with masks → lithography
 - Define terminals
MOSFETs

- Basic Operation
 - Idea is to use the Drain and Source terminals for conduction, and to control the flow of current through these terminals by applying a voltage to the Gate.

 ![MOSFET Diagram]

- There are three states of operation:
 - Accumulation
 - Depletion
 - Inversion

\[\text{Current } I_G = 0 \text{ due to } \text{SiO}_2 \]
MOSFETs

- Basic Operation (Continued)
 - **Accumulation**
 - Occurs when Gate voltage creates an electric field in the region between the N wells that attracts majority carriers → holes
 - To attract holes in a P-type substrate, use a negative gate voltage

- The electric field lines from the Gate terminate on the accumulated holes, so that there is no attraction of electrons from the Drain and Source regions
 - Results in no current flow between Drain and Source
MOSFETs

Basic Operation (Continued)

- **Depletion**
 - Occurs when Gate voltage creates an electric field in the region between the N implants that repels majority carriers \(\rightarrow \) holes
 - To repel holes in a P-type substrate, use a positive gate voltage

- Note that charge under Gate region is fixed charge, created by removing holes from their acceptor atoms in the P substrate
- The electric field lines from the Gate terminate on the depleted acceptor atoms
 \(\Rightarrow \) Results in no current flow between Drain and Source
MOSFETs

- Basic Operation (Continued)
 - **Inversion**
 - Occurs when Gate voltage reaches a critical point, where electrons begin to be attracted from N+ Drain and Source regions
 - Forms an N-type channel between the Drain and Source
 - Density of electrons in the channel ~ density of donor atoms in the N+ implants
 - Now can have flow of electrons from Drain to Source
 - Current flow is controlled by the Gate Voltage
 - The point at which the Gate voltage creates a conductive channel under the Gate is called the Threshold Voltage V_{Th}

 \[
 V_{\text{GS}} \geq V_{\text{TH}}
 \]
MOSFETs

- Basic Operation (Continued)
 - **Inversion** (Continued)
 - Suppose now connect a voltage source between Drain and Source
 - Allows current to flow between Drain and Source
 - Results in voltage drop across channel
 → Channel begins to narrow at Drain end

- Holes pumped into the Drain recombine with ionized acceptors in the channel near the Drain
- Electric field from the Gate is not strong enough to sustain the full width of the channel at the Drain, resulting in a narrowing of the channel
MOSFETs

- Basic Operation (Continued)
 - Inversion (Continued)
 - If there is a voltage drop across the channel, then the voltage at the drain must be greater than at the source:

 For the channel to exist:

 \[V_{GS} > V_{TH} , \ V_{GD} > V_{TH} \]

 Then:

 \[V_{GD} = V_{GS} + V_{SD} > V_{TH} \]

 Or:

 \[V_{DS} < V_{GS} - V_{TH} \]

 - It can be shown that, for this mode of operation, the voltage drop in the channel is resistive, and that the current \(I_D \) is given by:

 \[
 I_D \approx KV_{DS} [V_{GS} - V_{TH}], \text{ valid for } V_{DS} < V_{GS} - V_{TH}
 \]
Basic Operation (Continued)

- **Inversion** (Continued)
 - As continue to increase V_{DS}, channel reaches a point where the width goes to 0 at the Drain → *Pinch-Off*
 - As continue to increase V_{DS}, channel begins to recede at the Drain → *Beyond Pinch-Off*

![Diagram of MOSFETs]

At Pinch-off:

\[
V_{DS} = V_{GS} - V_{TH}
\]

Beyond Pinch-off:

\[
V_{DS} > V_{GS} - V_{TH}
\]

- Now, current flow from drain to source depends only on V_{GS}, not on resistance in channel
 - Drain looks like current source!

It can be shown that for Beyond Pinch-off, the Drain looks like a current source, independent of V_{DS}, and that the current I_D is given by:

\[
I_D \approx \frac{K}{2} (V_{GS} - V_{TH})^2, \text{ valid for } V_{DS} \geq V_{GS} - V_{TH}
\]
MOSFETs

- **IV Characteristics**
 - Have defined 2 regions of operation
 - Linear region \rightarrow IV characteristics look **resistive** \rightarrow Voltage-controlled resistor
 - Beyond Pinch-off \rightarrow IV characteristics look like a **current source**
 - Typically plot I_D versus V_{DS} as a function of V_{GS} \Rightarrow Family of curves

- **Linear Region:**
 - $I_D = KV_{DS} \cdot [V_{GS} - V_{TH}]$, valid for $V_{DS} < V_{GS} - V_{TH}$

- **Active Region:**
 - $I_D = K/2 \cdot (V_{GS} - V_{TH})^2$, valid for $V_{DS} \geq V_{GS} - V_{TH}$
MOSFETs

- Types of N-Channel MOSFETs
 - **Enhancement Mode FETs**
 - Channel does not exist at \(V_{GS} = 0 \)
 - This is what has been described previously
 - Must provide bias \(V_{GS} \) to create channel
 - **Depletion Mode FETs**
 - Channel does exist at \(V_{GS} = 0 \)
 - These devices are made this way through doping the channel
 - Must provide negative bias \(V_{GS} \) to turn channel off

- Electrical Symbol

 - **N Channel Enhancement Mode**
 - **N Channel Depletion Mode**
MOSFETs

- Types of P Channel MOSFETs
 - Enhancement Mode FETs
 - Channel does not exist at \(V_{GS} = 0 \)
 - Must provide bias \(V_{GS} \) to create channel
 - Depletion Mode FETs
 - Channel does exist at \(V_{GS} = 0 \)
 - Must provide negative bias \(V_{GS} \) to turn channel off

\[ID = \frac{V_{DS}}{2} = \frac{V_{GS} - V_{TH}}{2} \]

- Electrical Symbol

\[V_{DS} = V_{GS} - V_{TH} \]

\[V_{GS} = V_{TH} + 4 \]
\[V_{GS} = V_{TH} + 3 \]
\[V_{GS} = V_{TH} + 2 \]
\[V_{GS} = V_{TH} + 1 \]

\[V_{DS} = V_{GS} - V_{TH} \]

\[V_{GS} = V_{TH} + 4 = +2 \]
\[V_{GS} = V_{TH} + 3 = +1 \]
\[V_{GS} = V_{TH} + 2 = 0 \]
\[V_{GS} = V_{TH} + 1 = -1 \]
MOSFETS

- Circuit Applications
 - Linear circuits \to Amplifiers
 - Voltage-controlled current source with gain
 - Excellent when need high input impedance
 - Analog Switches
 - Digital Logic \to CMOS
MOSFETs

- Linear Circuit Models (N channel Enhancement Mode)
 - Properties:
 - High impedance between Gate and Source
 - In Active Region, Drain-Source looks like a voltage-controlled current source
 - Generally, there are two types of models:
 - DC biasing
 - AC performance
 - General Approach
 - Find DC operating point
 - AC parameters found from small excursions around operating point

\[g_m = \frac{\partial I_D}{\partial V_{GS}} \bigg|_Q \]

⇒ **Output will be the sum of the DC operating point + the AC response**
MOSFETs

- **Linear Circuit Models (N channel Enhancement Mode) (Continued)**
 - AC Model (assumes operation in active region)
 - Includes voltage-dependent current source with transconductance \(g_m \)
 - Sometimes includes parasitic capacitances between Gate and Drain \(c_{gd} \), and between Gate and Source \(c_{gs} \)
 - Usually, FET parameters are supplied by the manufacturer

- **Spice Models**
 - Level 2: Use equations
 - BSIM: Behavioral
 - Much more accurate
 - Takes advantage of knowing process parameters
 - Used extensively for ASIC design
MOSFETs

- Linear Circuits
 - Example – Common Source Amplifier – N-channel, Enhancement Mode

![Circuit Diagram]

\[V_1(t) = 0.1 \sin(2 \pi 1000 t) \]

Data from Manufacturer

- \(V_{\text{TH}} = 2V \)
Linear Circuits

- **Example – Amplifier**
 - **DC Analysis – Find Q Point**
 - Remove all L’s & C’s
 - Capacitors open
 - Inductors short
 - Remove all time-dependent sources
 - Voltage sources shorted
 - Current sources open
 - Insert DC model
 - Analyze circuit
 - Find operating point

- **In general, there is not a DC Model**
 - In Beyond Pinch-off, operating point is nonlinear
 - Must find operating point using info from manufacturer

\[
I_D = \frac{K}{2} \ (V_{GS} - V_{TH})^2 \quad \text{valid for } V_{DS} \geq V_{GS} - V_{TH}
\]
MOSFETs

- Linear Circuits
 - Example – Amplifier
 - DC Analysis – Find Q Point (Cont.)

Find V_{GS} → Simple voltage divider:

$$V_{GS} = \frac{V_S \times R_2}{R_1 + R_2} = \frac{15 \times (100K)}{(500K)} = 3V > V_{TH} \rightarrow \text{Operating in Active Region}$$

$$I_D = \frac{K}{2} \ (V_{GS} - V_{TH})^2$$

From curve, find:

$$10mA = \frac{K}{2} \ (5 - 2)^2 \ \Rightarrow \ K = 2.2E-3$$

Plug in K, V_{GS}, & V_{TH} to find I_D at Q:

$$I_D = \frac{(2.2E-3)}{2} \ (3 - 2)^2 = 1.1mA$$

$$V_O = V_S - (I_D \times R_3) = 15 - 7.7 = 7.3V$$

Now find g_m from curve at Q point:

$$g_m = \frac{\partial I_D}{\partial V_{GS}} \bigg|_Q \approx 5 \text{ mA} / 2.5V = 2E-3$$
MOSFETs

- Linear Circuits (Continued)
 - Example – Amplifier (Cont.)
 - AC Analysis – Find the Gain
 - Remove all DC sources
 - Voltage sources → short
 - Current sources → open
 - Insert AC model
 - Analyze circuit
 - Find Gain

Mid-Frequency AC Model
MOSFETs

- Linear Circuits (Continued)
 - Example – Amplifier (Cont.)
 - AC Analysis

Equivalent Circuit at Mid-Frequency with Transistor Model

Find v_{gs} → Node Equation:

$$\left[\frac{v_{gs}}{R_1} \right] + \left[\frac{v_{gs}}{R_2} \right] + \left[\frac{(v_{gs} - v_i)}{(Z_{C1})} \right] = 0$$

$$Z_{C1} = \frac{1}{(j \omega C_1)}$$

v_{gs} \left[1/R_1 + 1/R_2 + (j \omega C1) \right] = Vi \left(j \omega C1 \right)$

$$v_{gs} = \frac{v_i \left(j \omega C1 \right) (R_1 R_2)}{R_1 + R_2 + (j \omega C_1 R_1 R_2)}$$

$v_{gs} \approx v_i$

Find v_o → Node Equation:

$$\left[\frac{v_o}{R_3} \right] + i_d = 0$$

$$\left[\frac{v_o}{R_3} \right] + g_m v_{gs} = 0$$

$v_{gs} = v_i$, $g_m = 2E^{-3}$ (from DC analysis)

$$v_o = -g_m v_i R_3 = -(0.1)(2E^{-3}) = -1.4$$

$$\frac{v_o}{v_i} = -g_m R_3 = -14$$

$v_o(t) = 7.3 - 1.4 \sin (2 \pi 1000 t)$

\Rightarrow Output is sum of DC + AC parts
MOSFETS

- Analog Switches
 - Principle: Operate either in ohmic region, or at $I_D = 0$

\[V_{GS} = V_{TH} + 4 \]
\[V_{GS} = V_{TH} + 3 \]
\[V_{GS} = V_{TH} + 2 \]
\[V_{GS} = V_{TH} + 1 \]
\[V_{GS} = V_{TH} \]

\[\rightarrow I_D = 0 \]

- Load line moves, depending on V_{DS}
- But operate either on $V_{GS} = V_{GS,MAX}$
 or on $V_{GS} = V_{TH}$

N-Channel Device

$V_{DS} = V_{GS} - V_{TH}$
MOSFETS

- Digital Logic → CMOS
 - Also operating either full on or full off, not in between
 - Consider an inverter

- When \(V_I = V_{CC} \), \(Q_2 \) ON, \(Q_1 \) OFF → \(V_O = 0V \)
- When \(V_I = 0V \), \(Q_2 \) OFF, \(Q_1 \) ON → \(V_O = V_{CC} \)

Only have current flow during switching
(Approximate Off-to-On transition showing)
Switching times: ~nSec → pSec
When not switching → No current → Low power

<table>
<thead>
<tr>
<th>(V_{IN})</th>
<th>(V_{OUT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>
CMOS

Motivation

- For many circuits (amplifiers, switches, digital logic), it is useful to have both N-channel and P-channel devices on the same substrate
 - How is this done? \(\rightarrow\) P wells & N wells

Basic Construction

\(\Rightarrow\) Basis for modern IC fabrication technologies
Bipolar Transistors

Introduction

- Bipolar Junction Transistors (BJTs) are 3-terminal devices, where the current flow between two of the terminals (Collector & Emitter) is controlled by injecting charge into the third terminal (Base), which creates diffusion currents between the two active terminals.

 - Current flow is achieved by diffusion currents between the two highly-doped active terminals (Collector & Emitter)
 - Charge carriers are minority carriers (p-type \rightarrow electrons, n-type \rightarrow holes)
 - Current flow is bi-directional (both electrons and holes participate)
Bipolar Transistors

- Basic Construction – NPN Transistor
 - Conceptual construction

⇒ Looks like two back-to-back diodes
⇒ Base-Emitter junction is forward-biased
⇒ Base-Collector junction is reverse biased
Bipolar Transistors

- Basic Construction – NPN Transistor
 - How does it work?
 - Start by injecting a hole into the Base from external source
 - Extra hole in Base attracts electrons from the Emitter
 - As electrons enter Base from Emitter, they are swept through the base by the strong electric field seen by the reverse-biased Base-Collector junction
 - Generally, N electrons are swept through from Emitter to Collector before hole in Base can migrate to Emitter
 - Gives Current Gain $\beta = \frac{I_C}{I_B}$
 - Some holes in Base recombine in Base with electrons from Emitter
 - Most holes make it to the Emitter

 ➔ The unique construction of the junctions, along with the special doping levels, make this work
 ➔ Can have NPN, or PNP Transistors
Bipolar Transistors

- **Symbols**
 - NPN
 - PNP

- **IV Characteristics**
 - NPN
 - PNP

Basic Electronics – Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab – Session 3
Bipolar Transistors

- **Model - NPN**
 - **DC Model**

 Model
 For
 Linear
 Region

 ![DC Model Diagram]

 - **AC Models – Hybrid Pi**

 ![AC Models Diagram]

 Generally have a “Load Line”:

 - DC Model establishes Q point
 - AC Model determines excursion

 \[g_m v_{be} = \beta i_b \]
Bipolar Transistors

- Linear Circuits
 - Example: NPN Common Emitter Amplifier

\[V_i = 0.1 \sin(\omega t) \]
Frequency of operation: 1 KHz – 100 KHz

Data from Manufacturer

\[
\begin{align*}
I_{CEO} & \approx 0 \\
V_{BE} & = 0.7 \text{ V} \\
r_\pi & = 23 \text{ K} \\
\beta_{DC} & = 70 \\
\beta_o & = 100 \\
r_d & \approx \infty
\end{align*}
\]

Basic Electronics – Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab – Session 3
Bipolar Transistors

- Linear Circuits (Cont.)
 - Example (Cont.):
 NPN Common Emitter Amplifier
 - DC Analysis – Find Q Point
 - Remove all L’s & C’s
 > Capacitors open
 > Inductors short
 - Remove all time-dependent sources
 > Voltage sources shorted
 > Current sources open
 - Insert DC model
 - Analyze circuit
 - Find operating point

DC Model for the NPN Transistor
Bipolar Transistors

- Linear Circuits
 - Example (Cont.):
 - DC Analysis
 - Find Q Point

Write node equation at V_B:

$$\left(\frac{V_B - V_S}{R_1}\right) + \left(\frac{V_B}{R_2}\right) + I_B = 0$$

At node V_E:

$$V_E = (I_B + \beta_{DC} I_B) R_4 = I_B (1 + \beta_{DC}) R_4$$

Then, noting that V_B and V_E are related:

$$V_E = V_B - V_{BE} = V_B - 0.7$$

$$I_B = (V_B - 0.7) / [(1 + \beta_{DC}) R_4]$$

Solving:

$$V_B = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{[(1 + \beta_{DC}) R_4]} = \frac{V_S}{R_1} + 0.7 / [(1 + \beta_{DC}) R_4]$$

Plugging in values, find:

$$V_B = 5.56V$$

$$V_E = V_B - 0.7 = 4.86V$$

$$I_B = (V_B - 0.7) / [(1 + \beta_{DC}) R_4] = 19.6 \mu A$$

$$V_C = V_S - \beta_{DC} I_B R_3 = 9.5V$$

$$V_{CE} = V_C - V_E = 4.64V, \quad I_C = \beta_{DC} I_B = 1.37 mA$$
Bipolar Transistors

- Linear Circuits
 - Example (Cont.)
 - DC Analysis (Cont.)
 - Check results

Curve from Mfgr:

Approximate operating point → Good place to operate for a linear amplifier
Bipolar Transistors

- **Linear Circuits**
 - Example (Cont.):
 - NPN Common Emitter Amplifier
 - AC Analysis – Find the Gain
 - Remove all DC sources
 - Voltage sources → short
 - Current sources → open
 - Insert AC model
 - Analyze circuit
 - Find Gain

Mid-Frequency AC Model

for the NPN Transistor

\[V_i = 0.1 \sin(\omega t) \]

1 KHz – 100 KHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{CEO})</td>
<td>(\approx 0)</td>
</tr>
<tr>
<td>(V_{BE})</td>
<td>0.7 V</td>
</tr>
<tr>
<td>(r_\pi)</td>
<td>23K</td>
</tr>
<tr>
<td>(\beta_{DC})</td>
<td>70</td>
</tr>
<tr>
<td>(\beta_o)</td>
<td>100</td>
</tr>
<tr>
<td>(r_d)</td>
<td>(\approx \infty)</td>
</tr>
</tbody>
</table>
Bipolar Transistors

- Linear Circuits
 - Example (Cont.):
 - AC Analysis (Continued)

More complicated...

But, for mid frequencies, it turns out that can treat C_1 & C_2 as short circuits

Why?...

Impedances are small compared to R_1,...R_4 at frequencies > 1000 Hz

\(\Rightarrow \text{Can Simplify...} \)
Bipolar Transistors

- Linear Circuits
 - Example (Cont.): NPN Common Emitter Amplifier
 - AC Analysis (Continued)

Treating C_1 & C_2 as short circuits:

- Much simpler
- Need only 1 node equation to solve!

```
ICEO \approx 0
V_{BE} = 0.7 \text{ V}
\beta_{DC} = 70
\beta_0 = 100
r_d \approx \infty
```

Equivalent Circuit at Mid-Frequency with Transistor Model
Bipolar Transistors

- Linear Circuits
 - Example (Cont.): NPN Common Emitter Amplifier
 - AC Analysis (Continued)

\[i_b = \frac{v_i}{r_p} \]
\[v_o = -\beta_o i_b R_3 \]
\[= -\beta_o R_3 \frac{v_i}{r_p} \]

\[\frac{v_o}{v_i} = -\beta_o \frac{R_3}{r_\pi} = -\beta_o \frac{R_3}{r_\pi} = -17.4 \]

For: \(v_i(t) = 0.1 \sin(2\pi 10,000 t) \) \(\Rightarrow \) \(v_o(t) = 9.5 - 1.74 \sin(2\pi 10,000 t) \)

\(\Rightarrow \) Valid over mid-frequencies
\(~1\ \text{KHz} - 100\ \text{KHz}\)

\(\Rightarrow \) Output is sum of DC + AC parts
CMOS Analog Circuits

- A Basic CMOS, Differential, 1-Stage Amplifier
 - Uses P channel and N channel devices
 - No resistors!
 - Simple circuit can have gains ~ 1000
 - ➔ ASICS
 - Designer chooses transistor width and length of channel
 - Uses same principles introduced in this lecture
 - Each transistor has a role…
 - Generally use SPICE to simulate, but first design pass uses hand calculations
CMOS Digital Circuits

- **Inverter**

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NOT A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **NAND**

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **NOR**

These are the basic building blocks for flip-flops, counters, registers, Programmable Logic, Microprocessors, etc.

Images from allaboutcircuits.com
Thank You for your Attention!

I hope that you enjoyed the course and found it useful!