Basic Electronics

Introductory Lecture Course for

Technology and Instrumentation in Particle Physics 2011

Chicago, Illinois June 9-14, 2011

Presented By

Gary Drake

Argonne National Laboratory

Session 3

Session 3

Semiconductor Devices

⇒ Only depends on physical properties

(or often, Ohm-cm)

Resitivity of Materials

<u>Metals</u>	<u>Semiconductors</u>	<u>Insulators</u>
10 ⁻⁶ to 10 ⁻⁴ Ω-cm	10 ⁻³ to 10 ⁺⁸ Ω-cm	> 10 ⁺⁸ Ω-cm
 Upper electron shells nearly empty 	 Partially filled shells Bonds covalently to form weakly stable structures 	 Completely filled shells

Semiconductors on the Periodic Chart

Atomic Structure of Silicon – Group IVA

Adding Impurities into Silicon

Consider Phosphorous – Group VA
 3 empty positions

Phosphorous: 1S2 2S2 2P6 3S2 3P3 Z = 15

5 / 8 positions filled

- Represented as:
 P Each line is an electron in the 3rd shell
- Introduction into Silicon Crystalline Structure
 - Extra electron is weakly
 bound, and easily removed
 → Donor Impurity
 II
 II
 Si = Si =

- Adding Impurities into Silicon (Continued)
 - Consider Aluminum = Group IIIA

Aluminum: 1S2 2S2 2P6 3S2 3P1 \leftarrow 5 empty positions Z = 13

3 / 8 positions filled

- Represented as:
 AI ← Each line is an electron in the 3rd shell
- Introduction into Silicon Crystalline Structure
 - Missing electron is weakly accepted into lattice
 Acceptor Impurity
 - Concept of mobile "holes"
 - When electron is captured, hole moves from location to location

- Adding Impurities into Silicon (Continued)
 - Introduction of impurities into intrinsic silicon is called "Doping"
 - Amount of doping characterized by concentration of charge carriers
 - + $n^{}_{\rm i}$ = # intrinsic carriers in pure silicon / unit volume $~\approx$ 1.4E10 / cm^3
 - N_d = # donor atoms / unit volume
 - N_a = # acceptor atoms / unit volume
 - N-type Silicon

•
$$N_d - N_a >> n_i$$

- High concentration of donor atoms
- Provides excess electrons to lattice as mobile charge carriers

P-type Silicon

- $N_a N_d >> n_i$
 - High concentration of acceptor atoms
 - Provides excess holes to lattice as mobile charge carriers

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 3

@ 300° K

- Adding Impurities into Silicon (Continued)
 - How to make use of mobile charge carriers
 - Bonds can be broken by:
 - Application of an Electric Field
 - » Basic principle of how integrated circuits work
 - Application of Light \rightarrow Photons impart energy
 - » Basic principle of how photo cells work
 - » Use reverse principle for light emitting diodes (LEDs)
 - Heat \rightarrow Kinetic Energy
 - » Basic use for temperature sensors
 - » Generally a bad property for semiconductors...

PN Junctions

- Forming a PN Junction
 - Take P-type & N-type silicon, and butt them together

- When butt together, opposite charges attract
 - Mobile electrons from N-type silicon attracted to vacancies in P-type
 - Mobile holes from P-type silicon attracted to vacancies in N-type
 - ⇒ Results in Acceptor & Donor atoms being ionized
 - Creates space charge regions
 - ⇒ Results in the creation of a built-in Electric Field

PN Junctions

- Biasing a PN Junction
 - Suppose apply a voltage to the PN Junction

- Positive terminal of V_{BIAS} attracts electrons
- Negative terminal of V_{BIAS} attracts holes
- Makes space charge region <u>bigger</u>
- Increases E field across junction
- <u>Reduces</u> ability of current to flow across junction
- ⇒ Reverse Bias
- Now suppose we reverse the polarity of V_{BIAS}

- Positive terminal of V_{BIAS} adds holes to P region
- Negative terminal of V_{BIAS} adds electrons to N
- Makes space charge region <u>smaller</u>
- <u>Decreases</u> E field across junction
- <u>Enhances</u> ability of current to flow across junction
- ⇒ Majority Carrier:

Holes recombine with ionized acceptors Electrons recombine with ionized donors

PN Junctions

- Biasing a PN Junction (Continued)
 - At a critical bias, space charge region disappears

- Built-in E field across junction is gone
- Now charge carriers provided by V_{BIAS} can move across PN junction
- ⇒ Forward Bias → Conduction
- ⇒ Each new electron/hole pair pushes existing pair out of bulk
- How much voltage is required to reach forward bias?
 - Answer: Related to how much energy is required to remove bound electrons (or holes) from their nuclei
 - \rightarrow Work Function
 - Depends on doping concentrations
 - Depends on intrinsic carrier concentration
 - Depends on temperature

 $\phi = kT/q \ln [N_d N_a / n_i^2]$

```
Basic Electronics – Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab – Session 3
```

- Physical Description
 - Essentially a simple PN Junction

Symbol

- IV Characteristics
 - Shockley Diode Equation

$$I_D = I_S [e^{-[k V_D/(n q T)} - 1]$$

⇒ Nonlinear IV relationship

Where: $I_S = Reverse Saturation Current$ k = Boltzman Constant (1.38E-23 J/K) T = Temperature (° Kelvin) $q = charge (1.6E-19 C/e^-)$ $n = quality factor, 1 \ge n \ge 2$ $V_T = k T / q = 25.8 mV @ room temp$ = Thermal Voltage $\Rightarrow In most diodes, I_S is very small$

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 3

13

- IV Characteristics (Cont.)
 - Many diodes exhibit reverse breakdown → Zener Effect

- Ideal Characteristics
 - Sometimes, it is useful to use a linear approximation

- Circuits
 - Rarely use Shockley equation in hand calculations
 - SPICE uses Shockley equation or behavioral models
 - Gives accurate solution
 - For hand calculations 2 methods:
 - Use linear approximation
 - Use graphical techniques

- Circuits (Continued)
 - Example Use Linear Approximation:

- Circuits (Continued)
 - Example Use Graphical Methods \rightarrow Load Line Analysis:
 - Take Diode out Calculate open-circuit voltage \rightarrow I_D = 0
 - Then replace diode with short Calculate short circuit current \rightarrow V_D = 0
 - Plot on diode IV graph → Find Operating Point Q

Gary Drake, Argonne National Lab – Session 3

Field Effect Transistors

Introduction

- Field Effect Transistors (FETs) are 3-terminal devices, where the current flow between two of the terminals (Drain & Source) is controlled through the use of an electric field applied at the third terminal (Gate), which modulates a conduction channel between the two active terminals.
 - Current flow is achieved by drift currents through the channel
 - Charge carriers are majority carriers (p-type → holes, n-type → electrons)
 - Current flow is uni-directional
- Several different kinds:

 - Junction FET (JFET)
 - Metal Oxide Semiconductor FET (MESFET)
 - High Electron Mobility Transistor (HEMT)
 - Depleted FET (DEPFET)
 - (Many other variations...)

- Gate Gate Source
- We will focus on this today
 ⇒ Used extensively in HEP
 - ⇒ Custom ASIC design!

- Basic Construction
 - Begin with lightly-doped P-type substrate (could be N-type as well...)

- Cover surface with layer of silicon dioxide (SiO2)
 - Like glass
 - Insulator \rightarrow Very high resistivity $\rightarrow \rho \sim 1E18 \Omega$ -cm \Rightarrow Very

- Basic Construction (Continued)
 - Etch openings into the SiO₂ using hydrofluoric acid (HF)
 - Dissolves SiO₂ but not the silicon underneath

- Diffuse donor impurities into substrate to make N-type implants
 - Heavy doping \rightarrow N⁺

- Basic Construction (Continued)
 - Add metal contacts
 - Applied using Sputtering or Evaporating Metal

- Basic construction done
 - All process steps done with masks → lithography
- Define terminals

Basic Operation

 Idea is to use the Drain and Source terminals for conduction, and to control the flow of current through these terminals by applying a voltage to the Gate

- There are three states of operation:
 - Accumulation
 - Depletion
 - Inversion

- Basic Operation (Continued)
 - Accumulation
 - Occurs when Gate voltage creates an electric field in the region between the N wells that <u>attracts majority carriers</u> → holes
 - To attract holes in a P-type substrate, use a negative gate voltage

- The electric field lines from the Gate terminate on the accumulated holes, so that there is no attraction of electrons from the Drain and Source regions
 - ⇒ Results in no current flow between Drain and Source

- Basic Operation (Continued)
 - **Depletion**
 - Occurs when Gate voltage creates an electric field in the region between the N implants that <u>repels majority carriers</u> → holes
 - To repel holes in a P-type substrate, use a positive gate voltage

- Note that charge under Gate region is fixed charge, created by removing holes from their acceptor atoms in the P substrate
- The electric field lines from the Gate terminate on the depleted acceptor atoms

⇒ Results in no current flow between Drain and Source

Basic Operation (Continued)

• Inversion

- Occurs when Gate voltage reaches a critical point, where electrons begin to be attracted from N⁺ Drain and Source regions
 - Forms an N-type channel between the Drain and Source
 - Density of electrons in the channel ~ density of donor atoms in the $N^{\rm +}$ implants

- Now can have flow of electrons from Drain to Source
- Current flow is controlled by the Gate Voltage
- The point at which the Gate voltage creates a conductive channel under the Gate is called the Threshold Voltage $V_{\rm Th}$

$$V_{GS} \geqq V_{TH} \\ \text{Basic Electronics} - \text{Special Lecture for TIPP 2011} \\ \text{Gary Drake, Argonne National Lab} - \text{Session 3} \\ \end{array}$$

- **Basic Operation (Continued)**
 - *Inversion* (Continued)
 - Suppose now connect a voltage source between Drain and Source
 - Allows current to flow between Drain and Source
 - Results in voltage drop across channel
 → Channel begins to narrow at Drain end

- Holes pumped into the Drain recombine with ionized acceptors in the channel near the Drain
- Electric field from the Gate is not strong enough to sustain the full width of the channel at the Drain, resulting in a narrowing of the channel

- Basic Operation (Continued)
 - Inversion (Continued)
 - If there is a voltage drop across the channel, then the voltage at the drain must be greater than at the source:

- It can be shown that, for this mode of operation, the voltage drop in the channel is resistive, and that the current I_D is given by:

$$\label{eq:ID} \begin{split} I_D \approx ~K~V_{DS}~[~V_{GS}-~V_{TH}~]\,,\, valid~for~V_{DS} < V_{GS}-~V_{TH} \\ \\ \hline & \text{Basic Electronics}-\text{Special Lecture for TIPP 2011} \end{split}$$

Gary Drake, Argonne National Lab – Session 3

- Basic Operation (Continued)
 - Inversion (Continued)
 - As continue to increase V_{DS}, channel reaches a point where the width goes to 0 at the Drain → *Pinch-Off*
 - As continue to increase VDS, channel begins to recede at the Drain
 → Beyond Pinch-Off

IV Characteristics

- Have defined 2 regions of operation
 - Linear region \rightarrow IV characteristics look <u>resistive</u> \rightarrow Voltage-controlled resistor
 - Beyond Pinch-off → IV characteristics look like a <u>current source</u>
- Typically plot I_D versus V_{DS} as a function of $V_{GS} \; \Rightarrow$ Family of curves

- Linear Region: I_{D} = $K \: V_{DS} \:$ [V_{GS} $\: V_{TH}$], valid for $V_{DS} < V_{GS}$ $\: V_{TH}$
- Active Region: I_D = K/2 $(V_{GS} V_{TH})^2$, valid for $V_{DS} \ge V_{GS} V_{TH}$

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 3 29

Basic Electronics – Special Lecture for TIPP 2011

Gary Drake, Argonne National Lab - Session 3

Types of N-Channel MOSFETs

- Enhancement Mode FETs
 - Channel <u>does not</u> exist at $V_{GS} = 0$
 - This is what has been described previously
 - Must provide bias $V_{\rm GS}$ to create channel

Source

 These devices are made this way through doping the channel Must provide negative bias $V_{\rm GS}$ to turn channel off $V_{GS} = V_{TH} + 4 = +2$ $V_{GS} = V_{TH} + 3 = +1$

Channel <u>does</u> exist at $V_{GS} = 0$

Depletion Mode FETs

Source

N Channel

Depletion Mode

30

■ Types of P Channel MOSFETs ⇒ Everything is reversed...

⇒ Same plots, just use absolute value signs...

MOSFETS

- **Circuit Applications**
 - Linear circuits → Amplifiers
 - Voltage-controlled current source with gain
 - Excellent when need high input impedance
 - Analog Switches

- Linear Circuit Models (N channel Enhancement Mode)
 - Properties:
 - High impedance between Gate and Source
 - In Active Region, Drain-Source looks like a voltage-controlled current source
 - Generally, there are two types of models:
 - DC biasing
 - AC performance
 - General Approach
 - Find DC operating point
 - AC parameters found from small excursions around operating point

AC Transconductance: $g_m = \partial I_D / \partial V_{GS}$ Found at Operating Point Q

Generally, AC response occurs at small deviations around Operating Point

⇒ Output will be the sum of the DC operating point + the AC response

- Linear Circuit Models (N channel Enhancement Mode) (Continued)
 - AC Model (assumes operation in active region)
 - Includes voltage-dependent current source with transconductance g_m
 - + Sometimes includes parasiitic capacitances between Gate and Drain $c_{\rm gd}\text{,}$ and between Gate and Source $c_{\rm gs}$
 - ⇒ Usually, FET parameters are supplied by the manufacturer

- Spice Models
 - Level 2: Use equations
 - BSIM: Behavorial
 - Much more accurate
 - Takes advantage of knowing process parameters
 - Used extensively for ASIC design

- Linear Circuits
 - Example Common Source Amplifier N-channel, Enhancement Mode

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 3 36

+

Vo

+

Vo

MOSFETs

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 3 39

MOSFETS

- Analog Switches
 - Principle: Operate either in ohmic region, or at ID = 0

But operate either on V_{GS} = V_{GS,MAX} or on V_{GS}=V_{TH}

MOSFETS

• When
$$V_I = V_{CC}$$
, Q_2 ON, Q_1 OFF \rightarrow $V_0 = 0V$
• When $V_I = 0V$, Q_2 OFF, Q_1 ON \rightarrow $V_0 = V_{CC}$

V _{IN}	V _{OUT}
L	Η
Н	L

CMOS

Motivation

- For many circuits (amplifiers, switches, digital logic), it is useful to have both N-channel and P-channel devices on the same substrate
 - How is this done? \rightarrow P wells & N wells
- Basic Construction

⇒ Basis for modern IC fabrication technologies

Introduction

- Bipolar Junction Transistors (BJTs) are 3-terminal devices, where the current flow between two of the terminals (Collector & Emitter) is controlled by injecting charge into the third terminal (Base), which creates diffusion currents between the two active terminals.
 - Current flow is achieved by diffusion currents between the two highly-doped active terminals (Collector & Emitter)
 - Charge carriers are minority carriers
 (p-type → electrons, n-type → holes)
 - Current flow is bi-directional (both electrons and holes participate)

- Basic Construction NPN Transistor
 - Conceptual construction

- ⇒ Looks like two back-to-back diodes
- ⇒ Base-Emitter junction is forward-biased
- ⇒ Base-Collector junction is reverse biased

- Basic Construction NPN Transistor
 - How does it work?
 - Start by injecting a hole into the Base from external source
 - Extra hole in Base attracts electrons from the Emitter
 - As electrons enter Base from Emitter, they are swept through the base by the strong electric field seen by the reverse-biased Base-Collector junction

Graphic courtesy of Wikipedia

- Generally, N electrons are swept through from Emitter to Collector before hole in Base can migrate to Emitter
 - Gives Current Gain β = $I_{\rm C}$ / $I_{\rm B}$
- Some holes in Base recombine in Base with electrons from Emitter
- Most holes make it to the Emitter
 - The unique construction of the junctions, along with the special doping levels, make this work
 - ⇒ Can have NPN, or PNP Transistors

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 3

Typical Construction

Graphic courtesy of Wikipedia

- Linear Circuits
 - Example: NPN Common Emitter Amplifier

 $V_i = 0.1 \sin(\omega t)$ Frequency of operation: 1 KHz – 100 KHz

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 3

48

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 3 49

Basic Electronics – Special Lecture for TIPP 2011 Gary Drake, Argonne National Lab – Session 3 53

- Linear Circuits
 - Example (Cont.): NPN Common Emitter Amplifier
 - AC Analysis (Continued)

For: $v_i(t) = 0.1 \sin(2 \pi 10,000 t) \rightarrow v_o(t) = 9.5 - 1.74 \sin(2 \pi 10,000 t)$

⇒ Output is sum of DC + AC parts

CMOS Analog Circuits

- A Basic CMOS, Differential, 1-Stage Amplifier
 - Uses P channel and N channel devices
 - No resistors!
 - Simple circuit can have gains ~1000
 - → ASICS
 - Designer chooses transistor width and length of channel
 - Uses same principles introduced in this lecture
 - Each transistor has a role...
 - Generally use SPICE to simulate, but first design pass uses hand calculations

CMOS Digital Circuits

NAND

INF	UT	OUTPUT
A	в	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

NOR

These are the basic building blocks for flip-flops, counters, registers Programmable Logic, Microprocessors,

Images from allaboutcircuits.com

Thank You for your Attention!

I hope that you enjoyed the course and found it useful!