Basic Electronics

Introductory Lecture Course for

Technology and Instrumentation in Particle Physics 2011

Chicago, Illinois

June 9-14, 2011
Presented By
Gary Drake
Argonne National Laboratory
Session 3

Session 3

Semiconductor Devices

Preliminary Concepts

- Resistivity Revisited

$$
\mathrm{R}=\rho \mathrm{L} / \mathrm{A}
$$

$\mathrm{n}, \mathrm{v}_{\mathrm{d}}, \tau, \rho$

$$
\begin{aligned}
\rho=1 / \sigma=2 \mathrm{~m} /(\mathrm{nqq} \tau) \rightarrow \text { Units: } \mathrm{Kg}-\text { meter }^{3} / & \text { Coulomb-sec } \\
& =\text { Ohm-meter } \\
& \Rightarrow \text { Only depends on physical properties } \quad \text { (or often, Ohm-cm) }
\end{aligned}
$$

Resitivity of Materials

Metals	Semiconductors	Insulators
10^{-6} to $10^{-4} \Omega-\mathrm{cm}$	10^{-3} to $10^{+8} \Omega-\mathrm{cm}$	$>10^{+8} \Omega-\mathrm{cm}$
-Upper electron shells nearly empty	- Partially filled shells - Bonds covalently to form weakly stable structures	Completely filled shells

Preliminary Concepts

- Semiconductors on the Periodic Chart

Gary Drake, Argonne National Lab - Session 3

Preliminary Concepts

- Atomic Structure of Silicon - Group IVA
- Electron structure

4 empty positions in the 3P shell

4 / 8 positions filled

- Represented as: $\stackrel{\mid}{-\mathrm{Si}}-\leftarrow$ Each line is an electron in the $3^{\text {rd }}$ shell
- Covalent Bonding
- Intrinsic silicon bonds covalently in a crystalline structure, sharing electrons with neighbors to completely fill the 3P shell

Basic Electronics - Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab - Session 3

Preliminary Concepts

- Adding Impurities into Silicon
- Consider Phosphorous - Group VA

3 empty positions
Phosphorous: 1 S 2 2S2 2P6 $\underbrace{3 \mathrm{Z}=15} 3$ 3P3
5 / 8 positions filled

- Represented as: $\stackrel{\text { P/ }}{-\mathrm{P}-\leftarrow \text { Each line is an electron in the } 3^{\text {rd }} \text { shell }}$
- Introduction into Silicon Crystalline Structure
- Extra electron is weakly bound, and easily removed $=\mathrm{Si}=\mathrm{Si}=\mathrm{Si}=\mathrm{Si}=\mathrm{Si}=$
\rightarrow Donor Impurity

Preliminary Concepts

- Adding Impurities into Silicon (Continued)
- Consider Aluminum = Group IIIA

3 / 8 positions filled

- Represented as:

$$
\underset{\text { I }}{-\mathrm{Al}-\leftarrow \text { Each line is an electron in the } 3^{\text {rd }} \text { shell }}
$$

- Introduction into Silicon Crystalline Structure
- Missing electron is weakly accepted into lattice
\rightarrow Acceptor Impurity
- Concept of mobile "holes"
- When electron is captured, hole moves from location to location

Basic Electronics - Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab - Session 3

Preliminary Concepts

- Adding Impurities into Silicon (Continued)
- Introduction of impurities into intrinsic silicon is called "Doping"
- Amount of doping characterized by concentration of charge carriers
- $\mathrm{n}_{\mathrm{i}}=$ \# intrinsic carriers in pure silicon / unit volume $\approx 1.4 \mathrm{E} 10 / \mathrm{cm}^{3}$
- $\mathrm{N}_{\mathrm{d}}=$ \# donor atoms / unit volume
@ $300^{\circ} \mathrm{K}$
- $\mathrm{N}_{\mathrm{a}}=\#$ acceptor atoms / unit volume
- N-type Silicon
- $N_{d}-N_{a} \gg n_{i}$
- High concentration of donor atoms
- Provides excess electrons to lattice as mobile charge carriers
- P-type Silicon
- $\mathrm{N}_{\mathrm{a}}-\mathrm{N}_{\mathrm{d}} \gg \mathrm{n}_{\mathrm{i}}$
- High concentration of acceptor atoms
- Provides excess holes to lattice as mobile charge carriers

Preliminary Concepts
 - Adding Impurities into Silicon (Continued)

- How to make use of mobile charge carriers
- Bonds can be broken by:
- Application of an Electric Field
» Basic principle of how integrated circuits work
- Application of Light \rightarrow Photons impart energy
» Basic principle of how photo cells work
» Use reverse principle for light emitting diodes (LEDs)
- Heat \rightarrow Kinetic Energy
» Basic use for temperature sensors
» Generally a bad property for semiconductors...

PN Junctions

- Forming a PN Junction

- Take P-type \& N-type silicon, and butt them together

- When butt together, opposite charges attract
- Mobile electrons from N-type silicon attracted to vacancies in P-type
- Mobile holes from P-type silicon attracted to vacancies in N-type
\Rightarrow Results in Acceptor \& Donor atoms being ionized
\Rightarrow Creates space charge regions
\Rightarrow Results in the creation of a built-in Electric Field

PN Junctions

- Biasing a PN Junction

- Suppose apply a voltage to the PN Junction

- Positive terminal of $\mathrm{V}_{\text {BIAS }}$ attracts electrons
- Negative terminal of $\mathrm{V}_{\text {BIAS }}$ attracts holes
- Makes space charge region bigger
- Increases E field across junction
- Reduces ability of current to flow across junction
\Rightarrow Reverse Bias
- Now suppose we reverse the polarity of $\mathrm{V}_{\text {BIAS }}$

Basic Electronics - Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab - Session 3

PN Junctions

- Biasing a PN Junction (Continued)
- At a critical bias, space charge region disappears

- How much voltage is required to reach forward bias?
- Answer: Related to how much energy is required to remove bound electrons (or holes) from their nuclei \rightarrow Work Function
- Depends on doping concentrations
- Depends on intrinsic carrier concentration
- Depends on temperature

$$
\phi=\mathrm{kT} / \mathrm{q} \ln \left[\mathrm{~N}_{\mathrm{d}} \mathrm{~N}_{\mathrm{a}} / \mathrm{n}_{\mathrm{i}}^{2}\right]
$$

Gary Drake, Argonne National Lab - Session 3

Diodes

- Physical Description
- Essentially a simple PN Junction

- Symbol

$\mathrm{I}_{\text {DIODE }}$
- IV Characteristics
- Shockley Diode Equation

Where: $\begin{aligned} \mathrm{I}_{\mathrm{S}} & =\text { Reverse Saturation Current } \\ \mathrm{k} & =\text { Boltzman Constant }(1.38 \mathrm{E}-23 \mathrm{~J} / \mathrm{K}) \\ \mathrm{T} & =\text { Temperature }\left({ }^{\circ} \text { Kelvin }\right) \\ \mathrm{q} & =\text { charge }\left(1.6 \mathrm{E}-19 \mathrm{C} / \mathrm{e}^{-}\right) \\ \mathrm{n} & =\text { quality factor, } 1 \geqq \mathrm{n} \geqq 2 \\ \mathrm{~V}_{\mathrm{T}} & =\mathrm{k} \mathrm{T} / \mathrm{q}=25.8 \mathrm{mV} @ \text { room temp } \\ & =\text { Thermal Voltage } \\ & \Rightarrow \text { In most diodes, } \mathrm{I}_{\mathrm{S}} \text { is very small }\end{aligned}$
13

Gary Drake, Argonne National Lab - Session 3

Diodes

- IV Characteristics (Cont.)
- Many diodes exhibit reverse breakdown \rightarrow Zener Effect

- Ideal Characteristics
- Sometimes, it is useful to use a linear approximation

Diodes

- Circuits
- Rarely use Shockley equation in hand calculations
- SPICE uses Shockley equation or behavioral models
- Gives accurate solution
- For hand calculations - 2 methods:
- Use linear approximation
- Use graphical techniques

- Circuits (Continued

- Example - Use Linear Approximation:

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)
$$

Valid for: $\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{F}}$

$$
\text { Or: } \mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{F}}\left[1+\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)\right]
$$

If diode is ON:

Valid for: $\mathrm{I}_{1}>0$

\Rightarrow Called a Clamp Circuit

$$
\text { Or: } \mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{F}}\left[1+\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)\right]
$$

Diodes

- Circuits (Continued)
- Example - Use Graphical Methods \rightarrow Load Line Analysis:
- Take Diode out - Calculate open-circuit voltage $\rightarrow \mathrm{I}_{\mathrm{D}}=0$
- Then replace diode with short - Calculate short circuit current $\rightarrow \mathrm{V}_{\mathrm{D}}=0$
- Plot on diode IV graph \rightarrow Find Operating Point Q

Basic Electronics - Special Lecture for TIPP 2011
17
Gary Drake, Argonne National Lab - Session 3

Field Effect Transistors

- Introduction

- Field Effect Transistors (FETs) are 3-terminal devices, where the current flow between two of the terminals (Drain \& Source) is controlled through the use of an electric field applied at the third terminal (Gate), which modulates a conduction channel between the two active terminals.
- Current flow is achieved by drift currents through the channel
- Charge carriers are majority carriers (p-type \rightarrow holes, n-type \rightarrow electrons)
- Current flow is uni-directional
- Several different kinds:

- Metal Oxide Semiconductor FET (MOSFET) \leftarrow We will focus on this today
- Junction FET (JFET) \Rightarrow Used extensively in HEP
- Metal Oxide Semiconductor FET (MESFET)
\Rightarrow Custom ASIC design!
- High Electron Mobility Transistor (HEMT)
- Depleted FET (DEPFET)
- (Many other variations...)

MOSFETs

- Basic Construction

- Begin with lightly-doped P-type substrate (could be N-type as well...)

- Cover surface with layer of silicon dioxide (SiO2)
- Like glass
- Insulator \rightarrow Very high resistivity $\rightarrow \rho \sim 1 \mathrm{E} 18 \Omega-\mathrm{cm} \Rightarrow$ Very
 Important Aspect!

MOSFETs

- Basic Construction (Continued)
- Etch openings into the SiO_{2} using hydrofluoric acid (HF)
- Dissolves SiO_{2} but not the silicon underneath

- Diffuse donor impurities into substrate to make N-type implants
- Heavy doping $\rightarrow \mathrm{N}^{+}$

MOSFETs

- Basic Construction (Continued)
- Add metal contacts
- Applied using Sputtering or Evaporating Metal

- Basic construction done
- All process steps done with masks \rightarrow lithography
- Define terminals

Basic Electronics - Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab - Session 3

MOSFETs

- Basic Operation

- Idea is to use the Drain and Source terminals for conduction, and to control the flow of current through these terminals by applying a voltage to the Gate

- There are three states of operation:
- Accumulation
- Depletion
- Inversion

MOSFETs

- Basic Operation (Continued)

- Accumulation
- Occurs when Gate voltage creates an electric field in the region between the N wells that attracts majority carriers \rightarrow holes
- To attract holes in a P-type substrate, use a negative gate voltage

- The electric field lines from the Gate terminate on the accumulated holes, so that there is no attraction of electrons from the Drain and Source regions
\Rightarrow Results in no current flow between Drain and Source

MOSFETs

- Basic Operation (Continued)

- Depletion

- Occurs when Gate voltage creates an electric field in the region between the N implants that repels majority carriers \rightarrow holes
- To repel holes in a P-type substrate, use a positive gate voltage

- Note that charge under Gate region is fixed charge, created by removing holes from their acceptor atoms in the P substrate
- The electric field lines from the Gate terminate on the depleted acceptor atoms
\Rightarrow Results in no current flow between Drain and Source

Gary Drake, Argonne National Lab - Session 3

MOSFETs

- Basic Operation (Continued)
- Inversion
- Occurs when Gate voltage reaches a critical point, where electrons begin to be attracted from N^{+}Drain and Source regions
- Forms an N-type channel between the Drain and Source
- Density of electrons in the channel ~ density of donor atoms in the N^{+}implants
 Created by Inversion
- Now can have flow of electrons from Drain to Source
- Current flow is controlled by the Gate Voltage
- The point at which the Gate voltage creates a conductive channel under the Gate is called the Threshold Voltage $\mathrm{V}_{\text {Th }}$

$$
\mathrm{V}_{\mathrm{GS}} \geqq \mathrm{~V}_{\mathrm{TH}}
$$

MOSFETs

- Basic Operation (Continued)
- Inversion (Continued)
- Suppose now connect a voltage source between Drain and Source
- Allows current to flow between Drain and Source
- Results in voltage drop across channel
\rightarrow Channel begins to narrow at Drain end

- Holes pumped into the Drain recombine with ionized acceptors in the channel near the Drain
- Electric field from the Gate is not strong enough to sustain the full width of the channel at the Drain, resulting in a narrowing of the channel

Gary Drake, Argonne National Lab - Session 3

MOSFETs

- Basic Operation (Continued)
- Inversion (Continued)
- If there is a voltage drop across the channel, then the voltage at the drain must be greater than at the source:

- It can be shown that, for this mode of operation, the voltage drop in the channel is resistive, and that the current I_{D} is given by:

$$
\mathrm{I}_{\mathrm{D}} \approx \mathrm{~K} \mathrm{~V}_{\mathrm{DS}}\left[\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right], \text { valid for } \mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}
$$

Basic Electronics - Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab - Session 3

MOSFETs

- Basic Operation (Continued)
- Inversion (Continued)
- As continue to increase V_{DS}, channel reaches a point where the width goes to 0 at the Drain \rightarrow Pinch-Off
- As continue to increase VDS, channel begins to recede at the Drain \rightarrow Beyond Pinch-Off

At Pinch-off:

$$
\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}
$$

Beyond Pinch-off:
$\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}$
\Rightarrow Now, current flow from drain to source depends only on V_{GS}, not on resistance in channel SiO_{2}
\Rightarrow Drain looks like current source!

- It can be shown that for Beyond Pinch-off, the Drain looks like a current source, independent of $V_{D S}$, and that the current I_{D} is given by:

$$
\mathrm{I}_{\mathrm{D}} \approx \mathrm{~K} / 2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2}, \text { valid for } \mathrm{V}_{\mathrm{DS}} \geqq \mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}
$$

Gary Drake, Argonne National Lab - Session 3

MOSFETs

- IV Characteristics
- Have defined 2 regions of operation
- Linear region \rightarrow IV characteristics look resistive \rightarrow Voltage-controlled resistor
- Beyond Pinch-off \rightarrow IV characteristics look like a current source
- Typically plot I_{D} versus V_{DS} as a function of $\mathrm{V}_{\mathrm{GS}} \Rightarrow$ Family of curves

Beyond Pinch-off
Also called the Active Region

I_{D} vs V_{GS} in the Active Region

- Linear Region: $\mathrm{I}_{\mathrm{D}}=\mathrm{K} \mathrm{V}_{\mathrm{DS}}\left[\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right]$, valid for $\mathrm{V}_{\mathrm{DS}}<\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}$
- Active Region: $\mathrm{I}_{\mathrm{D}}=\mathrm{K} / 2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2}$, valid for $\mathrm{V}_{\mathrm{DS}} \geqq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}$

MOSFETs

- Types of N-Channel MOSFETs

- Enhancement Mode FETs
- Channel does not exist at $\mathrm{V}_{\mathrm{GS}}=0$
- This is what has been described previously
- Must provide bias V_{GS} to create channel

- Electrical Symbol

- Depletion Mode FETs
- Channel does exist at $\mathrm{V}_{\mathrm{GS}}=0$
- These devices are made this way through doping the channel
- Must provide negative bias V_{GS} to turn channel off

- Electrical Symbol

Basic Electronics - Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab - Session 3

MOSFETs

- Types of P Channel MOSFETs \Rightarrow Everything is reversed...
\Rightarrow Same plots, just use absolute value signs...
- Enhancement Mode FETs
- Channel does not exist at $\mathrm{V}_{\mathrm{GS}}=0$
- Must provide bias V_{GS} to create channel

- Electrical Symbol

- Depletion Mode FETs
- Channel does exist at $\mathrm{V}_{\mathrm{GS}}=0$
- Must provide negative bias V_{GS} to turn channel off

- Electrical Symbol

Gary Drake, Argonne National Lab - Session 3

MOSFETS

- Circuit Applications
- Linear circuits \rightarrow Amplifiers
- Voltage-controlled current source with gain
- Excellent when need high input impedance

- Analog Switches

- Digital Logic \rightarrow CMOS

MOSFETs

- Linear Circuit Models (N channel Enhancement Mode)
- Properties:
- High impedance between Gate and Source
- In Active Region, Drain-Source looks like a voltage-controlled current source
- Generally, there are two types of models:
- DC biasing
- AC performance
- General Approach
- Find DC operating point
- AC parameters found from small excursions around operating point

AC Transconductance: $\mathrm{g}_{\mathrm{m}}=\partial \mathrm{I}_{\mathrm{D}} /\left.\partial \mathrm{V}_{\mathrm{GS}}\right|_{\mathrm{Q}}$,
Found at Operating Point Q

Generally, AC response occurs at small deviations around Operating Point
\Rightarrow Output will be the sum of the DC operating point + the AC response

Gary Drake, Argonne National Lab - Session 3

MOSFETs

- Linear Circuit Models (N channel Enhancement Mode) (Continued)
- AC Model (assumes operation in active region)
- Includes voltage-dependent current source with transconductance g_{m}
- Sometimes includes parasiitic capacitances between Gate and Drain c_{gd}, and between Gate and Source c_{gs}
\Rightarrow Usually, FET parameters are supplied by the manufacturer

- Spice Models
- Level 2: Use equations
- BSIM: Behavorial
- Much more accurate
- Takes advantage of knowing process parameters
- Used extensively for ASIC design

MOSFETs

- Linear Circuits

- Example - Common Source Amplifier - N-channel, Enhancement Mode

MOSFETs

- Linear Circuits

- Example - Amplifier
- DC Analysis - Find Q Point
- Remove all L's \& C's
> Capacitors open
$>$ Inductors short
- Remove all time-dependent sources
> Voltage sources shorted
> Current sources open
- Insert DC model
- Analyze circuit
- Find operating point
- In general, there is not a DC Model
- In Beyond Pinch-off, operating point

$\mathrm{I}_{\mathrm{D}}=\mathrm{K} / 2 \underset{\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2}}{\text {, valid for } \mathrm{V}_{\mathrm{DS}} \geqq \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}}$
Basic Electronics - Special Lecture for TIPP 2011
36
Gary Drake, Argonne National Lab - Session 3

MOSFETs

- Linear Circuits
- Example - Amplifier
- DC Analysis - Find Q Point (Cont.) 10 mA

Find $\mathrm{V}_{\underline{G S}} \rightarrow$ Simple voltage divider:

$$
\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{S}} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=(15)(100 \mathrm{~K}) /(500 \mathrm{~K})
$$

$$
=3 \mathrm{~V}>\mathrm{V}_{\mathrm{TH}} \rightarrow \text { Operating in Active Region }
$$

$$
\mathrm{I}_{\mathrm{D}}=\mathrm{K} / 2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)^{2}
$$

From curve, find:

$$
10 \mathrm{~mA}=\mathrm{K} / 2(5-2)^{2} \rightarrow \mathrm{~K}=2.2 \mathrm{E}-3
$$

$$
\underline{\text { Plug in } K, V_{G S}}, \& V_{T H} \text { to find } I_{\underline{D}} \text { at } Q:
$$

$$
\mathrm{I}_{\mathrm{D}}=(2.2 \mathrm{E}-3) / 2(3-2)^{2}=1.1 \mathrm{~mA}
$$

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}}-\left(\mathrm{I}_{\mathrm{D}} \mathrm{R}_{3}\right)=15-7.7=7.3 \mathrm{~V}
$$

Now find gm from curve at Q point:

$$
\mathrm{g}_{\mathrm{m}}=\partial \mathrm{I}_{\mathrm{D}} /\left.\partial \mathrm{V}_{\mathrm{GS}}\right|_{\mathrm{Q}} \approx 5 \mathrm{~mA} / 2.5 \mathrm{~V}=2 \mathrm{E}-3
$$

Gary Drake, Argonne National Lab - Session 3

MOSFETs

- Linear Circuits (Continued)
- Example - Amplifier (Cont.)
- AC Analysis - Find the Gain
- Remove all DC sources
$>$ Voltage sources \rightarrow short
$>$ Current sources \rightarrow open
- Insert AC model
- Analyze circuit
- Find Gain

MOSFETs

- Linear Circuits (Continued)

- Example - Amplifier (Cont.)
- AC Analysis

Equivalent Circuit at Mid-Frequency with Transistor Model

Find $\mathrm{v}_{\mathrm{gs}} \rightarrow$ Node Equation:

$$
\begin{aligned}
& \quad\left[\mathrm{v}_{\mathrm{gs}} / \mathrm{R}_{1}\right]+\left[\mathrm{v}_{\mathrm{gs}} / \mathrm{R}_{2}\right]+\left[\left(\mathrm{v}_{\mathrm{gs}}-\mathrm{v}_{\mathrm{i}}\right) /\left(\mathrm{Z}_{\mathrm{C} 1}\right)\right]=0 \\
& \mathrm{Z}_{\mathrm{C} 1}=1 /\left(\mathrm{j} \omega \mathrm{C}_{1}\right) \\
& \quad \operatorname{vgs}[1 / \mathrm{R} 1+1 / \mathrm{R} 2+(\mathrm{j} w \mathrm{C} 1)]=\mathrm{Vi}(\mathrm{j} w \mathrm{C} 1) \\
& \mathrm{v}_{\mathrm{gs}}=\frac{\mathrm{v}_{\mathrm{i}}\left(\mathrm{jw} \mathrm{C}_{1}\right)\left(\mathrm{R}_{1} \mathrm{R}_{2}\right)}{\mathrm{R}_{1}+\mathrm{R}_{2}+\left(\mathrm{jw} \mathrm{C}_{1} \mathrm{R}_{1} \mathrm{R}_{2}\right)} \\
& \mathrm{v}_{\mathrm{gs}} \approx \mathrm{v}_{\mathrm{i}}
\end{aligned}
$$

Find $\mathrm{v}_{\mathrm{o}} \rightarrow$ Node Equation:
$\left[\mathrm{v}_{\mathrm{o}} / \mathrm{R}_{3}\right]+\mathrm{i}_{\mathrm{d}}=0$
$\left[\mathrm{v}_{\mathrm{o}} / \mathrm{R}_{3}\right]+\mathrm{g}_{\mathrm{m}} \mathrm{v}_{\mathrm{gs}}=0$
$\mathrm{v}_{\mathrm{gs}}=\mathrm{v}_{\mathrm{i}}, \mathrm{g}_{\mathrm{m}}=2 \mathrm{E}-3$ (from DC analysis)
$\mathrm{v}_{\mathrm{o}}=-\mathrm{g}_{\mathrm{m}} \quad \mathrm{v}_{\mathrm{i}} \quad \mathrm{R}_{3}=-(0.1)(2 \mathrm{E}-3)=-1.4$
$\frac{\mathrm{v}_{\mathrm{O}}}{\mathrm{v}_{\mathrm{i}}}=-\mathrm{g}_{\mathrm{m}} \mathrm{R}_{3}=-14$
$\mathrm{v}_{\mathrm{o}}(\mathrm{t})=7.3-1.4 \sin (2 \pi 1000 \mathrm{t})$
\Rightarrow Output is sum of DC + AC parts

Basic Electronics - Special Lecture for TIPP 2011

MOSFETS

- Analog Switches
- Principle: Operate either in ohmic region, or at ID $=0$

- Load line moves, depending on V_{DS}
- But operate either on $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GS}, \mathrm{MAX}}$ or on $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{TH}}$

MOSFETS

- Digital Logic \rightarrow CMOS
- Also operating either full on or full off, not in between
- Consider an inverter

Only have current flow during switching (Approximate Off-to-On transition showing) Switching times: $\sim \mathrm{nSec} \rightarrow \mathrm{pSec}$ When not switching \rightarrow No current \rightarrow Low power

- When $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{Q}_{2} \mathrm{ON}, \mathrm{Q}_{1} \mathrm{OFF} \rightarrow \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$
- When $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{Q}_{2} \mathrm{OFF}, \mathrm{Q}_{1} \mathrm{ON} \rightarrow \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$

$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {OUT }}$
L	H
H	L

CMOS

- Motivation
- For many circuits (amplifiers, switches, digital logic), it is useful to have both N -channel and P -channel devices on the same substrate
- How is this done? $\rightarrow P$ wells \& N wells
- Basic Construction

\Rightarrow Basis for modern IC fabrication technologies

Bipolar Transistors

- Introduction
- Bipolar Junction Transistors (BJTs) are 3-terminal devices, where the current flow between two of the terminals (Collector \& Emitter) is controlled by injecting charge into the third terminal (Base), which creates diffusion currents between the two active terminals.
- Current flow is achieved by diffusion currents between the two highly-doped active terminals (Collector \& Emitter)
- Charge carriers are minority carriers (p-type \rightarrow electrons, n-type \rightarrow holes)
- Current flow is bi-directional (both electrons and holes participate)

Bipolar Transistors

- Basic Construction - NPN Transistor
- Conceptual construction

Basic Electronics - Special Lecture for TIPP 2011
Gary Drake, Argonne National Lab - Session 3

Bipolar Transistors

- Basic Construction - NPN Transistor

- How does it work?
- Start by injecting a hole into the Base from external source
- Extra hole in Base attracts electrons from the Emitter
- As electrons enter Base from Emitter, they are swept through the base by the strong electric field

Graphic courtesy of Wikipedia seen by the reverse-biased Base-Collector junction

- Generally, N electrons are swept through from Emitter to Collector before hole in Base can migrate to Emitter
- Gives Current Gain $\beta=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$
- Some holes in Base recombine in Base with electrons from Emitter
- Most holes make it to the Emitter
\Rightarrow The unique construction of the junctions,

Typical Construction

Graphic courtesy of Wikipedia along with the special doping levels, make this work
\Rightarrow Can have NPN, or PNP Transistors

Bipolar Transistors

- Symbols
- NPN

- IV Characteristics
- NPN

Basic Electronics - Special Lecture for TIPP 2011

Bipolar Transistors

Generally have a "Load Line":

AC Model determines excursion

$$
\begin{array}{cc}
\mathrm{g}_{\mathrm{m}} \mathrm{v}_{\mathrm{be}}=\beta \mathrm{i}_{\mathrm{b}} \quad \begin{array}{c}
\text { Basic Electronics - Special Lecture for TIPP } 2011 \\
\text { Gary Drake, Argonne National Lab - Session } 3
\end{array}
\end{array}
$$

Bipolar Transistors

- Linear Circuits

- Example: NPN Common Emitter Amplifier

Data from Manufacturer

$\mathrm{V}_{\mathrm{i}}=0.1 \sin (\omega \mathrm{t})$
Frequency of operation: $1 \mathrm{KHz}-100 \mathrm{KHz}$

Bipolar Transistors

- Linear Circuits (Cont.)
- Example (Cont.): NPN Common Emitter Amplifier
- DC Analysis - Find Q Point
- Remove all L's \& C's
> Capacitors open
$>$ Inductors short
- Remove all time-dependent sources
> Voltage sources shorted
> Current sources open
- Insert DC model
- Analyze circuit
- Find operating point

DC Model for the NPN Transistor

Bipolar Transistors

- Linear Circuits
- Example (Cont.):
- DC Analysis - Find Q Point

Write node equation at V_{B} :

$$
\left[\left(\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{S}}\right) / \mathrm{R}_{1}\right]+\left[\mathrm{V}_{\mathrm{B}} /\left(\mathrm{R}_{2}\right)\right]+\mathrm{I}_{\mathrm{B}}=0
$$

At node V_{E} :
$V_{E}=\left(I_{B}+\beta_{D C} I_{B}\right) R_{4}=I_{B}\left(1+\beta_{D C}\right) R_{4}$
Then, noting that V_{B} and V_{E} are related:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{B}}-0.7 \\
&=\mathrm{I}_{\mathrm{B}}\left(1+\beta_{\mathrm{DC}}\right) \mathrm{R}_{4} \\
& \mathrm{I}_{\mathrm{B}}=\left(\mathrm{V}_{\mathrm{B}}-0.7\right) /\left[\left(1+\beta_{\mathrm{DC}}\right) \mathrm{R}_{4}\right]
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{B}}\left[1 / \mathrm{R} 1+1 / \mathrm{R}_{2}+1 /\left[\left(1+\beta_{\mathrm{DC}}\right) \mathrm{R}_{4}\right]=\mathrm{V}_{\mathrm{S}} / \mathrm{R}_{1}+0.7 /\left[\left(1+\beta_{\mathrm{DC}}\right) \mathrm{R}_{4}\right]\right.
$$

Plugging in values, find:

$$
\mathrm{V}_{\mathrm{B}}=5.56 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{B}}-0.7=4.86 \mathrm{~V}
$$

$$
\mathrm{I}_{\mathrm{B}}==\left(\mathrm{V}_{\mathrm{B}}-0.7\right) /\left[\left(1+\beta_{\mathrm{DC}}\right) \mathrm{R}_{4}\right]=19.6 \mu \mathrm{~A}
$$

$$
\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{S}}-\left[\begin{array}{ll}
\beta_{\mathrm{DC}} & \mathrm{I}_{\mathrm{B}} \mathrm{R}_{3}
\end{array}\right]=9.5 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}}=4.64 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=\beta_{\mathrm{DC}} \mathrm{I}_{\mathrm{B}}=1.37 \mathrm{~mA}
$$

Bipolar Transistors

- Linear Circuits
- Example (Cont.)
- DC Analysis (Cont.)
- Check results

Curve from Mfgr: I_{C}

Bipolar Transistors

- Linear Circuits
- Example (Cont.):

NPN Common Emitter Amplifier

- AC Analysis - Find the Gain
- Remove all DC sources
> Voltage sources \rightarrow short
$>$ Current sources \rightarrow open
- Insert AC model
- Analyze circuit
- Find Gain

Mid-Frequency AC Model for the NPN Transistor

Bipolar Transistors

- Linear Circuits
- Example (Cont.):
- AC Analysis (Continued)

More complicated...

\Rightarrow Can Simplify...
Basic Electronics - Special Lecture for TIPP 2011

Bipolar Transistors

- Linear Circuits
- Example (Cont.):

NPN Common Emitter Amplifier

- AC Analysis (Continued)

Treating $\mathrm{C}_{1} \& \mathrm{C}_{2}$ as short circuits:

\Rightarrow Much simpler
\Rightarrow Need only
1 node equation to solve!

Gary Drake, Argonne National Lab - Session 3

Bipolar Transistors

- Linear Circuits

- Example (Cont.): NPN Common Emitter Amplifier
- AC Analysis (Continued)

$$
\begin{aligned}
\mathrm{i}_{\mathrm{b}} & =\mathrm{v}_{\mathrm{i}} / \mathrm{r}_{\mathrm{p}} \\
\mathrm{v}_{\mathrm{o}} & =-\beta_{\mathrm{o}} \mathrm{i}_{\mathrm{b}} R_{3} \\
& =-\beta_{\mathrm{o}} R_{3} v_{\mathrm{i}} / r_{\mathrm{p}}
\end{aligned}
$$

$$
\begin{array}{rl|l}
\frac{\mathrm{v}_{\mathrm{O}}}{\mathrm{v}_{\mathrm{i}}}=-\beta_{\mathrm{o}} \mathrm{R}_{3} / \mathrm{r}_{\pi} \quad=-\beta_{\mathrm{o}} \mathrm{R}_{3} / \mathrm{r}_{\pi}=-17.4 \quad \begin{aligned}
\Rightarrow & \text { Valid over mid-frequencies } \\
& \sim 1 \mathrm{KHz}-100 \mathrm{KHz}
\end{aligned}
\end{array}
$$

For: $\mathrm{v}_{\mathrm{i}}(\mathrm{t})=0.1 \sin (2 \pi 10,000 \mathrm{t}) \rightarrow \mathrm{v}_{\mathrm{o}}(\mathrm{t})=9.5-1.74 \sin (2 \pi 10,000 \mathrm{t})$

CMOS Analog Circuits

- A Basic CMOS, Differential, 1-Stage Amplifier
- Uses P channel and N channel devices
- No resistors!
- Simple circuit can have gains ~1000
- \rightarrow ASICS
- Designer chooses transistor width and length of channel
- Uses same principles introduced in this lecture
- Each transistor has a role...

- Generally use SPICE to simulate, but first design pass uses hand calculations

CMOS Digital Circuits

- Inverter

- NAND

INPUT		OUTPUT
A	B	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

- NOR

INPUT		OUTPUT
A	B	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

\Rightarrow These are the basic building blocks for flip-flops, counters, registers Programmable Logic, Microprocessors,

Images from allaboutcircuits.com
Basic Electronics - Special Lecture for TIPP 2011
57
Gary Drake, Argonne National Lab - Session 3

Thank You for your Attention!

I hope that you enjoyed the course and found it useful!

