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The FACT Project

Key Question:

can newly developed Si-based photosensors [G-APD, siPm, MPPC,...]
be used in Cherenkov Telescopes ?
- reduction of operation complexity (less fragile, no HV)
- stable remote operation
- eventually lower cost and higher efficiency by profiting from
development for large market for Si-based technology

Main Problem:
PMTs and G-APD have rather different features
==> 'difficult' to compare datasheets

Solution:
Build a CT using new photosensors and try

==> First G-APD Cherenkov Telescope
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The FACT Project

Main Components:
- Refurbished HEGRA CT3 telescope at LaPalma

(9.2m? mirror area, f/d = 1.4, new drive system)

Camera:

- G-APDs (HAMAMATSU MPPC S10362-33-050C)
- Solid Light-Concentrators

- Electronics (DRS-4 based) in camera
- readout using standard ethernet
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Refurbished HEGRA-CT3 Telescope at La Palma:
- new mirrors installed (refurbished from CT1)




G-APD Basics |
Geiger-mode Avalanche Photodiode:
(also called: SiPM, MPPC, PPD, ...)
] - H
Pixelized Si-based photosensor:
a (single) photon hiting a cell has e

some probability to create a
'‘breakdown’ -> always same signal

N+

Many small cells ==> i
total signal analogue sum of the
iIsochronous single-cell signals

cell-sizes O(100x100 ym?)
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G-APD Basics
AL
Typical values:
Bias Voltage: 50-100 V (no HV needed!)
Gain: 10° ... 107

Photo-detection efficiency: 30...40 % (?)

[wavelength dependent]

no ageing (even if accidentaly exposed to daylight)
[but limited long-time experience]

several manufacturers:
CPTA/Photonique, Perkin-Elmer, Hamamatsu, Zecotec, MPI Semiconductor Lab, ...
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G-APD Features

Saturation (if >>10% of cells occupied; NSB!!!)
larger cell size --> higher PDE (less dead area)

but also worse saturation
FACT: use 50x50um? to be able to run with high NSB

Temperature dependent gain ( ~5% / degree )
==> temperature stabilization or
gain stabilization via feedback system

Cherenkov light

Sensitive also >>700nm

(==> more NSB) \\ \
MPPC sensitivity m\
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G-APD Features

slower rise and decay time than best PMTs,

but very constant signals (if constant gain)

final G-APDs
final pre-amps
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G-APD Features

@ Dark counts

o Cells can be triggered by any free carrier, eg. thermally generated or
field assisted tunneling.

o Rate: some 100 kHz up to MHz per mm? at room temperature.
@ Afterpulses

e The delayed release of carriers trapped during a breakdown in a cell
can trigger the cell again.

o Afterpulse probability 5 — 20% depending on the gain.
@ Crosstalk

e Defines the spectrum of the two phenomena above.
o Crosstalk probability 5 — 20% depending on the gain.

Typical dark count spectrum of a G-APD
(crosstalk 13%). Peaks up to 6 triggered
cells can be discerned. The spectrum also
includes afterpulses of previous dark count

events.
.
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G-APD Features

@ Dark counts

o Cells can be triggered by any free carrier, eg. thermﬂ%némted or
field assisted tunneling.

e Rate: some 100 kHz up to MHz per mm@ﬁremperature

@ Afterpulses
e The delayed release of carriers t @cl during a breakdown in a cell
can trigger the cell again. Wﬁ
e Afterpulse probabtlltv depending on the gain.

@ Crosstalk

e Defines th e@gnn of the two phenomena above.
° CrossE ability 5 — 20% depending on the gain.
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Typical dark count spectrum of a G-APD
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G-APD Features

@ Dark counts

thaveto.deal with much higher NSB

o Rate: some 100 kHz up to MHz per mm* at room temperature.

o Cells can be triéqered by any free carrier, eg. thermally generated or

@ Afterpulses

e The delayed release of carriers trapped during a breakdown in a cell
can trigger the cell again.

o Afterpulse probability 5 — 20% depending on the gain.
@ Crosstalk

e Defines the spectrum of the two phenomena above.
o Crosstalk probability 5 — 20% depending on the gain.

Typical dark count spectrum of a G-APD
(crosstalk 13%). Peaks up to 6 triggered
cells can be discerned. The spectrum also
includes afterpulses of previous dark count

events.
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G-APD Features

@ Dark counts
e Cells can be triggered by an { free carrier, ecr thermally generated or

haveto.deal with much higher NSB

e Rate: some 100 kHz up to MHz per mm~ at room temperature.

@ Afterpulses

e The delayed release of carriers trapped during a breakdown in a cell
can trigger the cell again.
o Afterpulse probability 5 — 20% depending on the gain.

@ Crosstalk

° important “chi'r@mgl'é“ph@tlm’f counting,

k probability 5 — 20% d¥pendi pbon the gain.
Ts: can be calibrated
(e.g. measure on avera e Z 1 instead .
o ark_copng,spectrum or a
of 10p e. for {pést !:q) 0 lk ks up to 6 triggered
cells can be dlscerned The spectrum also

includes afterpulses of previous dark count
events.
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G-APD Features

@ Dark counts have a random time distribution.

@ Afterpulses have an exponentially decreasing probability after an
initial breakdown.

| Dark counts and afterpulses: with dead time correction |
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Prototype Camera (2009)

- -
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Hollow Cone: (7.2mm)* — (2.8mm)? 4 G-APDs/pixel = 1 channel
1 cone per G-APD, blocks of 4 36 pixels, each (14.4 mm)?

Mirror

3 analog preamplifier boards Light and rain-tight box
Distribution of bias voltage Analog signal transfer

@ Mirror with 80cm focal length = 1° f.o.v / pixel
@ NSB from buildings and moonlight: ~ 300 MHz / G-APD (= 1.2 GHz / pixel)
@ Meas. at 22° night temp., G-APD plane cooled to 18”, no voltage feedback
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Prototype Results (2009)
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HV Feedback System

Not sufficient to correct for gain-variation in offline analysis:
Does also affect the trigger !!!

80 l ' l Templerature | l l I I
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G-APD Features

angular acceptance:
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Why Solid Light Concentrators

Liouville ’gheorem: can not shrink phage-space
Area <----> Angular Distribution,

FACT:
~80mm?

| | 9.0mm?
/ [ (7.8mm?)

/

==> Solid cones allow higher area-concentration!

(important for photosensors with high cost/mm?)
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Why Solid Light Concentrators

camera: less

v \/ In case of sealed
\ V4 | | \ . |

needs k
'perfect’ |
optical |
coupling |

=-=> g|ue ‘

Can use inexpensive casting
(UV transparent PMMA)

Complicated shapes possible
(FACT: square -> hexagon)

ETH Institute for

Frensel reflection

but: absorption
==> do not want too
large G-APD area

Square (2.8mm) to Hexagonal (9.5mm)

<
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Problems

\Window

_ : Tedlous and
Too high pressure during time consuming -

casting reduces luein

. g u
overall transmission ’ G-APD
(also micro-bubbles)

YTy ﬁ'tﬁt 4t

minor PMMA inpurities destroy UV transmission







FACT Camera (2011)

1440 G-APDS

=1440 Pixels
(0.1deg/Pixel
4.4deg FoV Camera)

320 HV Groups
for feedback system

160 Trigger cells

40 Elec.Boards
in 4 Crates

Weight: ~200kg
Power: ~1kW
IP67

r
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piXel Numbering (per Patch): cbpX

Total: Bias-Voltage Groups:
1440 piXels piXels 0.3
in 160 Patches 4.8
on 40 Boards

in 4 Crates
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G-APDs with

Winston cones

‘ — §- ‘
f Front baffle
plate

Cable adapters /
bias feed

Co-axial signal cables, 50 ohm, ~35 cm



Sensor Plate

Analogue Data and Bias-V cables
\

\.‘

—

2 Boards holding
9 G-APDs each

Solid light concentrators

Plexiglas Window

4 ETH Institute for
Particle Physics



Sensor Plate (elec. side): Ready




Sensor Platewindow side): Progress

All ~1500 G-APDs glued to
solid cones and tested

June 9th: >1000 cones
with G-APDs gluded

to front window
(expect all done by end of
this conference...)
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Camera Electronics: Ready
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Camera Electronics:

run: FACT_May2011/20110512T095303 channel: 1 | [\ mermorsa Sgnaroscaea_cns
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Data Acquisition 1: Ready
40 Boards a

36 Pixels

each board:

| - 4x DRS4

uj s analog pipeline
e F g (0.7 - 5 GHz)
| with 9 Channels
= - 4x serial ADC

33MHz
- FPGA, Ethernet

A

global Clock and
Trigger signals
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Data Acquisition 2: Ready

Standard Ethernet readout
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'HV' Power Supply: Ready

HV crate: 320 channels Single channel board
* 1 crate controller with USB interface « HV operational amplifier OPA454
* 10 HV mother boards ==> 320 Channels « controlled by a 12 bit serial DAC
* power conversion /distribution and control (DA8034U)
‘bus wired in the back of the crate « output voltage adjustable (0 — 90) V

““g * calibration using trim potentiometer

* voltage set precision 22 mV

* High side current monitor (HV7800)

* Over current protection, limit (1-5)mA
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FACT Status

- Telescope ready for comissioning

Camera:

- 'HV' built and tested

- Electronics: built, final tests going on

- solid cones: all tested

- G-APDs: all tested and glued to solid cones;
glueing to front window almost finished

- final cabling of full camera going on

==> Delivery to La Palma: July 2011(?)
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FACT Status

- Telescope ready for comissioning \’l\
Camera: \

- '"HV' built and tested

- Electronics: built, final teéagﬁmg on

- solid cones: all teste
- G-APDs: all test 6
glueing to

glued to solid cones;
‘kwmdow almost finished
of full camera going on

- final Cf%
== to La Palma: July 2011(?)
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