

Integration-Level Testing of Sub-Nanosecond Microchannel Plate Detectors for Use in Time-Of-Flight HEP Applications

M. Wetstein, B. Adams, M. Chollet, S. Jokela, Z. Insepov, V. Ivanov, J. Elam, A. Mane, Q. Peng for the LAPPD Collaboration

> TIPP June 13 2011

Making MCPs Faster, Bigger, and Cheaper:

- Microchannel Plate (MCP): A high-gain structure consisting of a thin plate with microscopic (typically <50 μ m) pores.
- The material in these plates is optimized for secondary electron emission (SEE).
- Plates are held at high voltages (typically a few kV) so that electrons will accelerate and strike the walls, initiating an avalanche of secondary electrons.
- Known for good gain (>10³), excellent timing resolution (<100 psec) and spatial resolution (<1 mm).
- Unfortunately, they are also typically expensive.

Making MCPs Faster, Bigger, and Cheaper:

LAPPD (Large-Area Picosecond Photodetector) Project:

Make large-area MCPs with low-cost, bulk materials, applied independently using atomic layer deposition (ALD), an established chemical process used by industry...

Microchannel plates, themselves, exist within the context of a larger detector system, a microchannel plate photomultiplier tube (MCP-PMT). The goal of the LAPPD collaboration is the development of a **complete** 8"x8" sealed tube detector.

 MCP testing at the Advance Photon Source (APS)

Gap spacing voltages:

Determine optimal operational voltages. How do these optimal voltages depend on particular choice of MCPs? Explore tradeoffs between gain, timing, saturation.

MCP performance:

What impact do each of the electrical, secondary electron yield (SEY) and geometric properties have on the overall timing, gain, and saturation of the MCP?

Anode Design:

What is the best anode design for a particular application. How does one reduce channel counts and cost without sacrificing timing or spatial resolution? How to maintain multi-GHz analog bandwidth and 50 ohm impedance?

An Opportunity: Goals of the ANL MCP-Characterization Lab

- ALD gives us the unique ability to vary electrical, secondary electron yield (SEY) and geometric properties of MCPs **independently**.
- Compared with commercial MCPs, which are typically made from a single material (lead-glass), we can produce MCPs with much wider variety of properties, **other properties held fixed**.
- Can explore limiting cases and place stronger constraints on MCP models.

ANL MCP-Testing Program

A unique collaboration between the HEP division and the Advanced Photon Source (APS)

33mm samples

Improving Fundamental Understanding Develop Working Experience Proof of Principles Guide Design

8" testing

Understanding scalability Developing operational experience sealed-tube testing Working out the challenges of a complete system Developing operational experience

Facilities and Resources:

TIPP 2011

Facilities and Resources:

Facilities and Resources:

ANL MCP Characterization Lab:

• A fast (sub-psec), pulsed laser with precision optics

- 800 nm Ti:Sapph laser
- pulse durations O(10) femtoseconds
- 1000 Hz repetition rate
- non-linear optics to produce UV(266 nm) and blue light (400nm)
- average power ~800 mWatt
- optics capable of micron-level translations and potential to focus on single pores

Vacuum systems for testing 33 mm photocathode-MCP-anode stacks approximating a complete device

- Capable of holding variable stacks of 1-3 MCPs and simple photocathode
- able to accommodate multiple readout designs
- capable of 10-7 torr
- 2 complete systems with parts for a third

• 8" MCP testing system (now commissioning)

- Fixtures for testing sealed-tube detectors (now commissioning)
- multi-GHz RF electronics
 - several oscilloscopes with 3-10 Gz analog bandwidth
 - high gain, low noise RF amplifiers
 - high-frequency splitters, filters, etc

Sunday, June 19, 2011

Methodology

- Control the number of photoelectrons (PEs) by attenuating the laser to the point where only a small fraction of pulses produce signal.
- Trigger on laser pulses to achieve very precise measurements of transit time
- Control size and position of beam to isolate individual spots on the MCP
- Record each pulse separately to produce statistical distributions.
- Integrate and fit the pulses to determine arrival time and gain.
- Able to discriminate between signal pulses and dark-current (random firing of the MCP)

Year 1 achievements:

- Early study of timing characteristics from a Cesiumlodide Photocathode
- Demonstration of enhanced gain from ALD coating on a commercial plate
- Developed operational experience working with MCPs
- Observation of first signals from ANL-fabricated, ALD-based MCPs

Argonne

 Design and commissioning of characterization chambers

Year 2 achievements:

- Completion of laser characterization lab for systematic MCP testing in the time domain.
- Developed operational experience performing current-based, average gain measurements.
- Demonstrated > 10⁵ amplification on Argonne-made, 33mm ALD functionalized glass plates.
- Demonstrated better than 200 psec time resolutions for single photoelectons in ALD MCPs
- Developed protocol for pulsed, single-photoelectron characterization.
- Close work with simulations and material characterization to improve fundamental understanding of MCP performance.
- Designed system for characterization of 8" MCPs, sealed tubes and lifetime testing

Average pulse shape for single MgO MCP at 1.5 kV, different photocathode voltages

Sunday, June 19, 2011

Current Work:

- Systematic comparison of gain and timing for MCPs with identical resistance, but three different SEY (secondary electron yield) compositions.
 - 20nm Al₂O₃
 - 20nm MgO
 - 2nm MgO
- Testing operation of single plates at high voltages.
- Comparison of MCP stacks with a common bottom plate.
- Systematic tests conducted for many different operational voltages, with the hope of placing strong constraints on models for avalanche formation.
- Plans for direct comparison of data with simulations and an upcoming publication

Current Work:

Complete MC-Data Cycle

- 3 MCP samples made with • Identical resistance, but different SEY chemistry
- Simulations based on material-. level characterization of SEY layers, guided by material-level simulations.
- MCP-level simulations to be . tuned to data for 1 of the 3 MCP samples, taken at multiple operational voltages.
- Once tuned, predictions will be • made on the performance of the other two samples, to be compared with data, afterwards...

0.35 0.3

0.25

0.2

0.15

0.1

-0.05 -0.1

Sunday, June 19, 2011

TIPP 2011

S. Jokela, Z. Insepov

300

Current Work:

20 nm MgO SEY layer

- Still tweaking the model. We expect even better agreement
- The model is tuned to the data, but only for this sample with 20nm MgO SEY coating.
- Once tuned, the simulation will be used to make a priori predictions of our other two samples, before the data results are revealed.
- Coming soon!

- 8" testing chamber is complete and successfully held 10⁻⁷ torr.
- Fixtures for mechanical assembly of 8" MCP stack designed to use spare glass parts for the sealed tube body.
- In the commissioning process.

- Chamber will be used to test, both:
 - 8"MCPs and
 - 33mm samples on 8" transmission lines
- Looking forward to our first 8" MCP samples.

Sealed Tube Testing

- Received our first functional, sealed-tube MCP ("mock-tile"), built to the specs of an 8" MCP stack, but with 4 pairs of working, 33mm MCPs
- Constructed a system for mechanical support, electrical connection, vacuum connection, and signal readout from tile.
- Successfully coupled the tile to our vacuum system and achieved a vacuum of ~10⁻⁵ torr (as measured just outside the pumpport).
- Working out some technical difficulties.
- In the midst of basic electrical testing.
- Several new sealed-tubes are currently being made.

Conclusions and Future Prospects:

Near Term:

- Systematic test of a 12 sample ensemble of MCPs with varying resistive and secondary emissive chemistries.
- Commissioning of the 8" testing system, successful operation of first working 8" MCPs
- Demonstration of first working sealed-tube detector
- Comparison of several anode designs, testing of PSEC chip on MCP signals
- Commissioning of aging/ scrubbing experiment

Long Term:

- Systematic batch testing of identical MCPs
- Integration of testing methods with Tile Factory
- Single pore testing, aging and saturation studies (double-pulsed measurements)
- Tests of potential single-MCP detectors

Details in Simulations:

The LAPPD Simulations Program

- Goal to develop a predictive, pseudo-physical MCP model to help guide MCP design.
- Help improve understanding of what is going on inside the pores.
- Takes experimental materials characterization as input.
- Two components:
 - true secondary electron yield (SEY)
 - specular reflection of incident primary electron, eg backscattering or BS
- SEY at normal incidence is measured.
- SEY at grazing incidence is extrapolated using a theoretical material model
- quasi-elastic reflection of the primary electron is derived from a theory.
- Normalization of the BS probability is a tunable parameter (controls the fraction of highly energetic electrons in the pore).

Backup Slides: Applications in Water Cherenkov

- A concern in using fast timing are the effects of frequency dependent dispersion, scattering and absorption.
- Using a fast toy MC originally developed by J. Felde we study the time of arrival for photons in an spherical detector.
- For a 50m detector with 100% coverage, the rise time (t₉₀-t₁₀) is of the order of 2 ns which cannot be sampled with standard PMT technology.
- For a given detector size, the rise time stays constant and the uncertainty in the position of the leading edge becomes smaller if larger photodetector coverage is considered.
- A combined improvement in photodetector coverage (for reduced

- This project is just starting year 3 of a 3 year time-table. We have no intention or expectation for LBNE waiting for us.
 - We're not likely to be ready for the first detector and don't want to interfere with any time-tables.
 - Could be ready for upgrades or a second detector.
- LBNE is not the only application we're interested in:
 - Collider physics: time-of-flight to determine flavor.
 - Medical PET imaging
 - Homeland security

Backup Slides How much do will these cost

too soon to tell...

 But, keeping cost down is a major objective: Made from inexpensive materials. Use industrial batch processes. Inexpensive electronics, trying to reduce number of necessary readout channels. 	In addition to the bottom-line cost of the detectors are secondary effects. • Market impact.
	 Possible savings on civil construction. Detector can be built closer to walls.

Cost/unit area is not the only relevant factor. Physics gains could be worth a little more.

