Design and construction of a cylindrical GEM detector as Inner Tracker device at KLOE-2

G. Morello, LNF-INFN
on behalf of the KLOE-2 IT subgroup

TIPP 2011 June, 10th 2011
The KLOE-2 Inner Tracker group

G. De Robertis, N. Lacalamita, R. Liuzzi, F. Loddo, M. Mongelli, A. Ranieri, V. Valentino

INFN Bari, Bari, Italy

M. Schioppa

INFN Cosenza, gruppo collegato LNF, Cosenza, Italy

Laboratori Nazionali di Frascati - INFN, Frascati, Italy

A. Di Domenico, M. Capodiferro, A. Pelosi

INFN Roma, Roma, Italy
KLOE at upgraded DAΦNE Φ factory (1020 MeV)

Pb-Scintillating Fiber Calorimeter with excellent timing performance:

- \(\sigma_t = 54 \text{ ps} / \sqrt{E (\text{GeV})} \oplus 100 \text{ ps} \)
- Energy resolution:
 - \(\sigma_E/E = 5.7 \% / \sqrt{E (\text{GeV})} \)
- 4 m long, 98% solid angle coverage

- Huge, transparent Drift Chamber in 5.2 kGauss field of a SC coil
- 2 m outer radius, 25 cm inner radius, 4 m long, He/iC\(_4\)H\(_{10}\) gas mixture, all-stereo geometry
- Momentum resolution: \(\sigma(p_T)/p_T \sim 0.4 \% \)
 - \(< \vec{p}_K > \simeq 120 \text{ MeV} \), \(< \vec{p}_\pi > \simeq 200 \text{ MeV} \)
- Spatial resolution: \(\sigma_{r\phi} \simeq 150 \mu m \), \(\sigma_z \simeq 2 \text{ mm} \)
Improvement of the decay vertex reconstruction requires an IT with

- \(\sigma_r \approx 200 \, \mu m \) and \(\sigma_z \approx 500 \, \mu m \)
- low material budget: < 2% \(X_0 \)
- low momentum
- 5 kHz/cm\(^2\) rate capability

The requirements can be met using

- 4 layers of cylindrical GEM with radii from 13 to 23 cm
- 700 mm active length
- X-V strips-pads readout
- 1.5 % \(X_0 \) radiation length with the carbon fibers support

Improvement of about a factor 3 on the \(K_S \rightarrow \pi \pi \) vertex resolution

Present vertex resolution 6 mm

TDR of Inner Tracker for KLOE-2 experiment [arXiv:1002.2572]
The steps leading to the final IT

- Construction and characterization of a CGEM prototype (test beam 2008) built using 3 GEM foils (354 x 330 mm²) spliced together. Axial strips (single view).

- Construction of 100 x 100 mm² planar chambers equipped with new concept for X-V readout and study of their behaviour in magnetic field (test beam 2009).
 NIMA 628 (2011) 194

- Construction and characterization of two large planar chambers with the new single-mask photolitographic technique equipped with final X-V readout (test beam 2010).
The Cylindrical GEM prototype

Proto01: $\varnothing = 300$ mm, $L = 350$ mm
1538 axial strips, 650 μm strips

NO FRAMES IN THE ACTIVE AREA

THE FIRST CGEM DETECTOR EVER!
The test beam on the CGEM prototype (2008)

10 GeV pions beam CERN-PS T9 area

- GAS MIXTURE: Ar/CO$_2$ 70/30
- GAIN: 2x104
- FEE: 16-channels GASTONE [NIMA 604 (2009)]
- Axial strips, 650 μm pitch
- External tracking: 2 MDT stations

Detection efficiency $\varepsilon = 99.6\%$

$\sigma_{GEM} = \sqrt{(250 \, \mu m)^2 - (140 \, \mu m)^2} \approx 200 \, \mu m$

$\sigma = 250 \, \mu m$

$650 \, \mu m / \sqrt{12}$

MDT spatial resolution
A new readout was drawn to fit the cylindrical shape of the IT anodes: a multilayer circuit with X-V pattern realized with strips (X) and pads (V) etched on the same kapton layer.

A dedicated test was performed in order to study the final readout configuration.
The IT dedicated FEE chip: GASTONE

- Mixed analog-digital circuit
- Low input equivalent noise, low power consumption and high integrated chip
- 4 blocks:
 - charge sensitive amplifier
 - shaper
 - leading-edge discriminator (programmable threshold)
 - monostable (stretch digital signal for trigger)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (pF)</td>
<td>20 mV/fC</td>
</tr>
<tr>
<td>Z_{IN}</td>
<td>400 Ω (low frequency)</td>
</tr>
<tr>
<td>C_{DET}</td>
<td>1 - 50 pF</td>
</tr>
<tr>
<td>Peaking time</td>
<td>90 - 200 ns (1-50 pF)</td>
</tr>
<tr>
<td>Noise (erms)</td>
<td>$800 e^- + 40 e^-$/pF</td>
</tr>
<tr>
<td>Channels/chip</td>
<td>64</td>
</tr>
<tr>
<td>Readout</td>
<td>LVDS/Serial</td>
</tr>
</tbody>
</table>

TOTAL POWER CONSUMPTION for the 30000 chs ~ 200 W
The test beam in magnetic field (2009)

The behaviour of a GEM in magnetic field was studied at H4 beam-line (RD51 facility) at CERN-SPS with 150 GeV pions. The magnetic field was provided by the GOLIATH dipole magnet; it can be adjusted up to 1.5 T in a 3x3x1 m³.

In this case the magnetic field has two effects: a shift of electrons with respect to the position of the track and a large spread of the charge.

- GAS MIXTURE: Ar/CO₂ 70/30
- GAIN: 2x10⁴
- FEE: GEMs partially equipped with 22 GASTONE boards
- External tracking: 4 planar GEMs, 650 μm pitch X-Y strips
- Trigger: 6 scintillators with SiPM

The setup was aligned at B=0. The X-V chamber was reversed with respect to the others: the distance between the X-V cluster and the reconstructed track was measured for different B values.
The test beam in magnetic field (2009)

X resolution @ B=0T

$\sigma_x \approx 200 \, \mu m$

Y resolution @ B=0T

$\sigma_y \approx 370 \, \mu m$

Displacement

<table>
<thead>
<tr>
<th>$\Delta x (\mu m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
</tr>
<tr>
<td>2500</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>500</td>
</tr>
</tbody>
</table>

Efficiency vs B field

<table>
<thead>
<tr>
<th>Efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>99</td>
</tr>
<tr>
<td>98</td>
</tr>
<tr>
<td>97</td>
</tr>
<tr>
<td>96</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>94</td>
</tr>
<tr>
<td>93</td>
</tr>
<tr>
<td>92</td>
</tr>
</tbody>
</table>

B field (T)

| V=1110, G~10^4 |
| V=1125, G~1.7×10^4 |
| V=1140, G~2×10^4 |
| V=1170, G~6×10^4 |

TIPP 2011, June 10th 2011

G. Morello, LNF-INFN
The KLOE-2 Inner Tracker requires GEM foils with an area of 350 x 700 mm2 (splicing 3 of them to obtain 1 electrode). This required a change in the GEM manufacturing:

the single-mask photolitographic technique

The foils are produced by the CERN TE-MPE-EM group.
The detector was flushed with Ar/CO$_2$ (70/30) and tested in current-mode with a 137Cs source (660 keV photons). A 10x10 cm2 chamber with double-mask foils was used as reference and normalization of performance.

GAIN ~25% lower in single-mask GEM

A ~20 V difference between the two curves.

NO DISCHARGE OBSERVED DURING MEASUREMENTS
The Large area planar prototype was tested at CERN-PS T9, equipped with the final X-V readout strips-pads

- **GAS MIXTURE:** Ar/CO_2 70/30
- **GAIN:** $2 \cdot 10^4$, $3 \cdot 10^4$
- **Final DAQ+electronics chain test:**
 - GASTONE64 + Interface board + General Intermediate Boards (GIB) + Software Interface
- **External tracking:** 4 planar GEMs, 650 μm pitch X-Y strips
- **Trigger:** 4 scintillators (2 upstream, 2 downstream)
Gain measured with 6 keV X-rays. Discharge rate measured with α particles from ^{241}Am source. The isobutane knocks down the discharge rate thanks to its quenching power. Further parameters have to be taken into account for final decision (v_{drift}, diffusion, primary and total ionization).
Gas mixture studies: GARFIELD simulations

Gas: CO₂ 30%, Ar 70%, T=290 K, p=1 atm

Ar:CO₂

\(B=0.5 \, \text{T} \)

Anode plane

\(\chi^2 / \text{ndf} = 147.8 / 88 \)

Constant 732.8 ± 5.8
Mean -1020 ± 1.8
Sigma 272.5 ± 1.2

Lorentz angle @ B=0.5 T

\(\chi^2 / \text{ndf} = 173.1 / 82 \)

Constant 323.8 ± 3.6
Mean -924.1 ± 3.5
Sigma 362 ± 2.3

Gas: iC₄H₁₀ 10%, Ar 90%, T=290 K, p=1 atm

Ar:isoC₄H₁₀

\(B=0.5 \, \text{T} \)

Anode plane
• Nikon microscope with ocular
• CCD
• Light source with optical fibers
• back-lighted inspection plane
• Mechanics and semi-automatic plane position handling
• Software for image editing

• Plexiglass box with O-rings and HV connectors to flow Nitrogen
• Relative Humidity (RH) probe
• CAEN SY2527 to test in parallel up to 40 sectors

After the gluing on the molds, that have a 400 µm thick Teflon film, the cylindrical layers are inserted one into the other by a vertical insertion machine.
IT: the construction has started!

Inner layer is glued on the mold

Cathode is rolled on the mold and glued in a vacuum bag.

Cathode is ready

Anode rolled on the mold

Carbon fiber support

Anode is glued
Conclusions

• The cylindrical prototype validated the new idea of this innovative detector

• The new concept for X-V readout was successfully tested in magnetic field with planar GEMs

• A Large area planar GEM was realized with the single-mask technique and tested with the final electronics chain

• The construction of the Inner Tracker for KLOE-2 experiment HAS STARTED planning to complete the detector in about one year (summer 2012)
Spare slides

G. Morello, TIPP 2011 June, 10th 2011
Double-mask technique

Starting raw material 50 μm kapton foil with 5 μm copper clad

Photoresist coating: the masks are laid down and exposed to UV light

Double side metal etching

Double side kapton etching
Single-mask technique

Starting raw material 50 μm kapton foil with 5 μm copper clad

Photoresist coating: the mask is laid down and exposed

Metal and kapton etching

Bottom side metal etching. Top side metal is preserved with **Cathodic Protection** technique

Back to kapton etching to get final shape
The test beam in magnetic field (2009)

KLOE B - field

Resolution X vs magnetic field

Efficiency vs Voltage (th=3.5 fC)

working point

G. Morello
TIPP 2011, June 10th 2011
Old path for signal routing:
20% X-talk between X and V

New path for signal routing:
<1% X-talk between X and V
Large area prototype

The foils are stretched on a custom-made machine with a tension of 1 kg/cm measured by load cells. Finite element simulation (ANSYS) indicates a maximum gravitational+electrostatic sag of the order of $20 \, \mu m$ ($O(5 \, \mu m)$ electrostatic only).

The frame is glued on the GEM using the vacuum bag system already tested during the CGEM construction. The results is a planar foil with no supports inside the active area.
Large area prototype

Dedicated tool for HV test of Cylindrical Electrode

Dedicated tool to handle the molds

The tolerance of 150 µm between the rings has been met

Durostone Fiberglass/Epoxy rings from RESARM
Large area GEM: optimization of the fields

Only slight difference between the two GEM (due to different hole shapes?)

Final operating fields values:
1.0 – 3.0 – 3.5 – 6.5 kV/cm
(Drift – Transf1 – Transf2 – Induction)

Equal charge sharing occurs at higher induction field in the single-mask
Gas mixture studies: GARFIELD simulations

Layout of the cell

Diffusion coefficient along X @ B=0.5 T

Diffusion coefficient along Y @ B=0.5 T

Diffusion coefficient along Z @ B=0.5 T

Ar:CO₂ 70:30
Ar:isoC₄H₁₀ 90:10
Integration status

- Cable integration presently the most important issue
- Temperature test in IT Front-end region done using maquette for cables & board-flanges with resistors

Temperature test Setup

Cooling needed in IT Front-end region

- Mockup of beam-pipe(BP) + BP supports + detectors planned for beginning 2011