Neutron to Gamma Pulse Shape Discrimination in Liquid Argon Detectors with HQE PMTs

Nicola Can ci
on behalf of
WArP R&D Group
(based on theses by R. Acciarri & P. Kryczynski)
Outline

- Pulse Shape Discrimination in Liquid Argon
- First measurements at lower Light Yield
- New measurements at high Light Yield
- Conclusions
Scintillation light in Liquid Argon

- Liquid Argon (LAr) is used in several experiments for the Dark Matter search

- Ionizing particles interacting in LAr create electron-ion pairs ($\text{Ar}^+ - e^-$) and excited molecular states (Ar_2^* excimer in Singlet or Triplet state)

- Both the processes lead to the formation of excited dimers which produce VUV scintillation radiation through de-excitation processes ($\text{Ar}_2^* \rightarrow 2\text{Ar} + \gamma$)

\[\ell(t) = \frac{\exp(-t/\tau)}{\tau} + \frac{A_T}{\tau} \frac{\exp(-t/\tau_T)}{\tau_T} \]

\[\int \ell(t) dt = A_S + A_T = 1 \]

The ratio A_S/A_T depends on the ionizing particle

\[\tau_S \left(^1\Sigma_U\right) = 5 \div 7 \text{ ns} \]
\[\tau_T \left(^3\Sigma_U\right) = 1300 \div 1600 \text{ ns} \]

+ a visible intermediate component with \[\tau_i \approx 60 \text{ ns} \]
Pulse Shape Discrimination in LAr

- $A_S/A_T=1/3$ for electron recoils (β and γ interactions)
- $A_S/A_T=3/1$ for nuclear recoils (n and WIMP interactions)

“Slow” Signals

“Fast” Signals

Gamma Waveform

Neutron Waveform
Within the WArP R&D phase exploratory studies have been performed with the aim of studying and optimizing of PSD to maximize β and γ background rejection in LAr detector:

- Applying, developing and comparing different PSD techniques and their discrimination powers using LAr detectors/prototypes: the “F-prompt” method (see next slides) resulted the most appropriate among those taken into consideration
- Optimizing the ”F-prompt” method through analysis of real and simulated data

A single phase LAr detector equipped with ETL PMTs and characterized by a “lower”/modest Light Yield ($\sim 1.5 \text{ phel/keV}_{ee}$) has been used (no electric fields)

Signals from PMTs directly acquired by waveform digitizer (AcqirisU1080A)
- 3.2×10^6 events acquired with a γ-source (^{133}Ba) for energy calibration and LY determination
- 8.5×10^6 events acquired with an Am/Be source with 3% of neutron events

Sensitivity and discrimination power for a DM detector based on LAr scintillation light have been estimated
F-prompt technique

- The F-prompt (Fp) method is the most common technique to quickly discriminate electron recoils from nuclear recoils

\[
F_p = \frac{\int_{T_i}^{T_f} V(t) \, dt}{\int_{T_i}^{T_f} V(t) \, dt} = \frac{S_F}{S_1}
\]

- \(V(t)\) Signal Sum
- \(S_F\) “Fast Integral”
- \(S_1\) “Total Integral”
Intermediate events

- The presence of a third population of events with $F_{p_{\gamma}} < F_{p_i} < F_{p_n}$ has been detected.

- MC simulation of the detector exposed to the Am/Be source has been performed to determine the origin of the intermediate component and to set the most appropriate F_p fitting function.

- This population is ascribed to inelastic scattering of neutron on Ar nuclei.

Raw F_p distribution from Am/Be source exposure.
Neutron spectrum and cross section

Primary Am/Be spectrum

Neutron cross section on ^{40}Ar

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Mean free path in LAr (cm)</th>
<th>Total cross section (barn)</th>
<th>Elastic cross section (barn)</th>
<th>($n,n'\gamma$) cross section (barn)</th>
<th>(n,X) cross section (barn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 MeV</td>
<td>8.5</td>
<td>5.56</td>
<td>4.98</td>
<td>0.58</td>
<td>-</td>
</tr>
<tr>
<td>5.0 MeV</td>
<td>14.5</td>
<td>3.29</td>
<td>1.81</td>
<td>1.48</td>
<td>-</td>
</tr>
<tr>
<td>14.2 MeV</td>
<td>20.8</td>
<td>2.28</td>
<td>0.79</td>
<td>0.64</td>
<td>0.85 ($n,2n$)</td>
</tr>
</tbody>
</table>
Monte Carlo simulations

- Intermediate populations of events originated by inelastic scattering of neutrons on Argon nuclei

- The suitable fitting function able to reproduce the total Fp distribution is given by:
 \[F_{\text{tot}}(t) = G_\gamma + G_n + (\text{Exp} \times G_{\text{int}}) \]
Neutron to gamma separation

Improvement of the separation is achieved through:

- Optimization of the integration time T_{Fp} (parameter of the Fp definition)
- Taking account of the intermediate population via the Fp distribution fitting function

Our first set of data was limited at the low energies by the modest LY characterizing our detector (ETL PMTs)

N. Cani - TIPP2011
The new test

As part of the experimental test with the 4 lt chamber at LNGS equipped with HQE PMTs (Hamamatsu R11065) – [reported in E. Segreto’s talk] (High Light Yield - LY):

- The chamber was again radiated with an Am/Be source to test the signal-to-background separation capability obtainable in particular at lower recoil energies

- Due to the new DAQ set-up and high LY (in the 6 phel/keV_e range) [E. Segreto & A. Szcelc presentations] the analysis is extended (compared to our previous tests) into a much wider energy range

- Sensitivity and precision of the measurement improved when compared to the first test.
New data sample

- No electric field applied to the LAr active volume (same LAr volume as before - about 4 lt)
- Much Higher Light Yield (6.35 phel/KeV_{ee} – [E. Segreto’s talk])
- Signals from the 4 PMTs directly acquired by means a new fast waveform digitizer (CAEN V1751) [A. Szecz talk]
- Much higher statistics: 30 million triggers (Am/Be events) acquired with ~7% of neutrons compared to ~3.5 % in previous work (due to low energy n-events and optimized n-source positioning)
- Improved background subtraction with the new DAQ system
- Data taken in a relatively short period (~1.5 days)
First results with the new set-up

- 20 million Am/Be events have been considered in the data analysis.
- Intermediate population still present (well contained within the extended dynamic range of the new CAEN wfm recorder in use with this test).
- Neutrons go up to 2000 phe.
Optimization of T_{Fp}

- T_{Fp} chosen at maximum difference between average neutron and gamma waveforms.
- Value confirmed independently by comparing the separation of the neutron and gamma peaks in each energy bin for different values of T_{Fp}.

Optimal value considered
T_{Fp}: 100 ns

$T_{Fp} \sim 100$ ns instead of expected tens of ns ascribed to the presence of an intermediate component in the LAr scintillation light signals.
Comparison with First Test

The second test setup is equivalent in size and photo-cathodic coverage to the first but characterized by a higher LY value.

- Better energy range, but slightly worse neutron-to-gamma separation achieved with the new set-up, possibly due to N\textsubscript{2} contamination [see E. Segreto’s talk] – work in progress.

- The nearing of neutron and gamma populations observed (as in Lippincott et al.)

- Assuming Quenching Factor of 0.3
Comparison with published results

- The wider neutron-gamma separation found should lead to higher sensitivity for searches of DM signals with Argon based detectors.
- Systematic errors are still under investigation.
- MC to check discrepancy in development.

energy, keV
Comparison at low energies

- Gamma and neutron averaged waveforms for different energy bins been taken into account
- Lowest 6 energy bins still under study to optimize reconstruction efficiency
Predicted sensitivity calculation (preliminary)

- Assuming LY of 1.6 phel/keV and requesting no background from 39Ar (first test data)

- Will be much better with the higher LY

- Work is still in progress (once we figure out the systematics we will be able to show the new sensitivity plot)
Conclusions

- Two separate tests have been performed to estimate the PSD in Liquid Argon using an Am/Be source.
- The first test with ~1.5 \text{phe}/\text{keV}, the second with 6.3 \text{phe}/\text{keV}.
- Calibrating with a standard neutron source one should take into account the inelastic events.
- Due to a high LY, we were able to study the PSD separation with more precision.
- Stay tuned for final results on predicted sensitivity and lowest energy events.

- The present talk is widely based on the theses of Pawel Kryczynski and Roberto Acciarri.
Back-up Slides
DAQ parameters

- Trigger on majority of 3 PMTs; each triggering on a fraction of single phel (5 ADC)
- Noise and baseline stable
- Reconstruction+trigger set an efficiency curve which starts below 20 phel
SER and \(\gamma\)-peak position stability

- PMT Single Electron Response positions stable during the whole of the run
- Gamma peak relatively stable during the acquisition run (important when adding runs together)
Neutron percentage

- Up to 7 percent of good neutron events in the data (compared to ~3.5 % in previous work)
Cuts applied

- Basic cuts
 - arrival time window about 50 ns
 - no saturation
 - no secondaries

- Noise cut removes events with F-prompt ~ 1

- F-prompt cut removes misreconstructed double events