Recent Progress in Silica Aerogel Cherenkov Radiator

Makoto Tabata Japan Aerospace Exploration Agency (JAXA) TIPP 2011 in Chicago

Overview

- Introduction to Silica Aerogel
- Novel Pin-drying Production Method of Silica Aerogel
- Optical Performance of New Silica Aerogel
- Summary

Introduction

Silica Aerogel

Silica aerogel is a 3D structural solid of SiO2 particles.

 porous (>99% air) low bulk density thermal insulator

transparent
 O(10) nm SiO2 particles
 Rayleigh scattering

AIELOS 2.8

• feel like styrofoam

30 mg/cc silica aerogel Scanning electron microscope image 10 mg/cc silica aerogel (magnification: x 100,000)

Applications

Silica aerogel is the most convenient material for Cherenkov radiator (typically n ~ 1.03).

ex) Aerogel Cherenkov counters

- TASSO @DESY
 n = 1.024 for π / K / p separation
 Discovery of gluon
- Belle @KEK
 n = 1.01-1.03 for π / K separation
 Discovery of CP violation in B system
- LHCb @CERN
 n = 1.03 for π / K / p separation
 Ring imaging Cherenkov counter

Conventional Production Method

Refractive index (density) can be controlled in the sol-gel step.

1st method: Single-step method 2nd method: Two-step method \leftarrow world standard

- 1. Wet-gel synthesis (sol-gel step) We have various preparation recipes for chemicals.
- 2. Aging
- 3. Hydrophobic treatment \leftarrow our original
- 4. CO₂ supercritical drying <u>1 month in total</u>

extract liquid component of wet-gel through supercritical drying

Our First Step in 1990s

Λ = 40 mm at n = 1.025 was obtained in the conventional method using alcohol solvent in 1990s.

Improvement of Transparency in 2004

The transmission length was improved in n ~ 1.04 in 2004.

Further efforts are needed in higher refractive index range.

Further Requirements

"High refractive index with high transparency" is a trend of

- Hadron experiments at J-PARC recent aerogel development. Threshold Cherenkov counter with aerogel
 n = 1.12-1.25 K / p separation at 1-2 GeV/c
- Belle II at SuperKEKB Aerogel Ring imaging Cherenkov (RICH) counter
 n = 1.05-1.06 (Λ > 40 mm) π / K separation up to 4 GeV/c

Our studies will open up further opportunities to employ aerogel in Cherenkov counters.

Aerogel RICH counter at end-cap

Novel Pin-drying Production Method

Pin-drying Production Method

Pin-drying (PD) method is 4th method to produce aerogelwith high refractive index.need additional time

- 1. Wet-gel synthesis (1st density control)
- 2. Aging3. Pin-drying (2nd density control)

Partial evaporation of solvent

Semi-sealed container with some pin-holes

4. Hydrophobic treatment
5. CO₂ supercritical drying

need additional time for the pin-drying process

length contraction

Reproducibility in PD Method Target refractive index is well-controlled by monitoring wet-gel weight.

wet-gel weight

Large Tile Production

Large tiles were produced w/o any cracks w/ keeping optical performance.

n ~ 1.05-1.06

- Conventional method: $11 \times 11 \times 2 \text{ cm}^3 \rightarrow 18 \times 18 \times 2 \text{ cm}^3$
- PD method: $9 \times 9 \times 2$ cm³ \rightarrow 14 \times 14 \times 2 cm³

Optical Performance

Expansion of High Index Range in 2005

Ultra-high refractive index (n > 1.10) aerogels with sufficient transparency ($\Lambda > 20$ mm) were developed.

refractive index

Improvement of Transparency in 2008

The transmission length was improved in n > 1.10.

refractive index

It takes long pin-drying process because DMF is difficult to evaporate.

The Most Transparent Sample in 2008

The highest transparency ($\Lambda > 50$ mm) was obtained in $n \sim 1.06$.

Beam Test Set Up

To evaluate aerogel, proximity RICH counter was used.

acceptance: 50-60%

Photoelectron Yield

Sufficient photoelectrons were detected.

- n = 1.05 + 1.06, 2 cm thick each (total 4 cm thick) $N_{p.e.} = 10.6$ (conventional) $\rightarrow 13.6$ (improved) 60% ring acceptance 12
- 1.10 < n < 1.23

 cm thick each
 N_{p.e.} = 5-10 (new data)
 50% ring acceptance

Clear Cherenkov rings were observed.

Summary

- The novel pin-drying method was developed and studied in detail as the 4th technique to produce silica aerogel with high refractive index and high transparency.
- Large aerogel tiles with n ~ 1.05 and good transparency were successfully manufactured without any cracks.
- Sufficient photoelectrons were detected in the beam test. We confirmed our aerogel has excellent performance.

Authors

- Makoto Tabata (JAXA & Chiba Univ.) tabata.makoto@jaxa.jp
- Ichiro Adachi (KEK)
- Hideyuki Kawai (Chiba Univ.)
- Masato Kubo (Chiba Univ.)
- Takeshi Sato (Chiba Univ.) and Belle II ARICH Group

Hydrophobic Treatment

Aged wet-gels are immersed in ethanol. Hydrophobic reagent is added to ethanol. The following reaction proceeds.

Hydrophobic reagent: hexamethyldisilazane ((CH₃)₃Si)₂NH

 $2(-OH) + ((CH_3)_3Si)_2NH \rightarrow 2(-OSi(CH_3)_3) + NH_3$ Hydroxyl group (hydrophilic) Trimethylsiloxy group (hydrophobic)

CO₂ Supercritical Drying

CO, phase diagram

Refractive Index Measurement

Refractive index is measured by Fraunhofer method using 405nm blue-violet semiconductor laser. Prism formula: $n/n_{air} = sin\{(\alpha + \delta_m)/2\}/sin(\alpha/2), \delta_m = tan^{-1}(d_m/L)$

Transmittance Measurement

Transmittance (T) is measured by a spectrophotometer. $T=Aexp(-Ct/\lambda^4)$ A, C: clarity parameters, t: thickness of aerogel We evaluate the transmission length at $\lambda = 400$ nm: $\Lambda = -t/lnT$.

Refractive Index Uniformity Measurement

X-rays are the most promising probe to evaluate density (p) uniformity in a aerogel tile.

Density measurement means refractive index measurement:

 $n = 1 + \alpha \rho$ $\alpha = const.$

Refractive Index Uniformity Data

Tile scan data along diagonal (or horizontal) line of a tile. X-ray beam size is ~1 mm in diameter.

Pin-drying Process

- Standard 1 month + pin-drying process
 The length of the pin-drying process depends on
 - Initial and target refractive index
 - Solvent (methanol(fast) or DMF(slow))
 - Size
- Example
 - Original wet-gel size: $10 \times 10 \text{ cm}^2$, final thick: 1 cm $n_o = 1.05 \text{ (DMF)} \rightarrow n = 1.065$: 1 week $n_o = 1.06 \text{ (methanol)} \rightarrow n = 1.12$: 2 weeks $n_o = 1.06 \text{ (methanol)} \rightarrow n = 1.25$: 8 weeks
 - Original wet-gel size: 16 × 16 cm², final thick: 2 cm
 n₀ = 1.05 (DMF) → n = 1.065: 2 weeks

Upper Limit of Pin-drying Method

 Methanol solvent Wet-gels become milky and are broken at n ~ 1.25 in the pin-drying process.

• DMF solvent

Wet-gels successfully shrink over n = 1.25. However, it is fragile in the hydrophobic treatment and supercritical drying process in n > 1.20.

Threshold Momentum

J-PARC Experiments

- E27 (search for K⁻pp state) requires n = 1.25 to separate kaons from high momentum protons.
- Eo3 (measurement of Xi⁻-atomic X rays) requires n = 1.12 to trigger positive kaons from protons at 1-2 GeV/c.

Report from XiX Collaboration $(K^{-}, K^{+}), (K^{-}, p)$ first level trigger rate: 10⁴/sec \rightarrow DAQ issue prototype threshold Cherenkov counter using aerogel by PD method $N_{p.e.} = 12-15$ as a result of a beam test K^{+} detection efficiency: > 90%, p fake trigger: 1/10

Proximity Focusing Radiator

Belle II Aerogel RICH counter

Proximity focusing radiator scheme

Prototype performance
of photoelectrons = 15.3
Cherenkov angle resolution = 13.5 mrad
6.6σ π/K separation at 4 GeV/c