Analysis of DHCAL Muon Events

José Repond Argonne National Laboratory

TIPP 2011 Conference, Chicago, June 9 - 14, 2011

General DHCAL Analysis Strategy

Noise measurement

- Determine noise rate (correlated and not-correlated)
- Identify (and possibly mask) noisy channels
- Provide random trigger events for overlay with MC events

Measurements with muons

- Geometrically align layers in x and y
- Determine efficiency and multiplicity in 'clean' areas
- Simulate response with GEANT4 + RPCSIM (requires tuning 3-6 parameters)
- Determine efficiency and multiplicity over the whole 1 x 1 m^2
- Compare to simulation and tuned MC
- Perform additional measurements, such as scan over pads, etc...

Measurement with positrons

- Determine response
- Compare to MC and tune 4^{th} (d $_{\text{cut}}$) parameter of RPCSIM
- Perform additional studies, e.g. software compensation...

Measurement with pions

- Determine response
- Compare to MC (no more tuning) with different hadronic shower models
- Perform additional studies, e.g. software compensation, leakage correction...

This talk

Next talk

The DHCAL Project

Argonne National Laboratory Boston University Fermi National Accelerator Laboratory IHEP Beijing University of Iowa McGill University Northwestern University University of Texas at Arlington

DCHAL Collaboration	Heads
Engineers/Technicians	22
Students/Postdocs	8
Physicists	9
Total	39

...and integral part of

The DHCAL in the Test Beam

		Date	DHCAL layers	RPC_TCMT layers	SC_TCM T layers	Total RPC layers	Total layers	Readout channels
Run I Run II	-{	10/14/2010 - 11/3/2010	38	0	16	38	54	350,208+320
	ſ	1/7/2011 – 1/10/2011	38	0	8	38	46	350,208+160
		1/11/2011 - 1/20/2011	38	4	8	42	50	387,072+160
		1/21/2011 – 2/4/2011	38	9	6	47	53	433,152+120
	L	2/5/2011 – 2/7/2011	38	13	0	51	51	470,016+0
Run III	-{	4/6/2011 - 5/11/2011	38	14	0	52	52	479,232+0
Run IV	-{	5/26/2011 - 6/28/2011	38	14	0	52	52	479,232+0

Beam and Trigger for Muon events

+32 GeV/c secondary beam + 3m Fe DAQ rate typically 500 - 1000/spill

Run	# of muon events
October 2010	1.4 Million
January 2011	1.6 Million
April 2011	2.5 Million
June 2011	2.2 Million

Some cute muon events

Note: Consecutive events (not selected) Look for random noise hits

Estimation of contributions from noise

Data collection

Trigger-less (all hits) mode for noise, cosmics
Triggered (record hits in 7 time bins of 100 ns each) for noise, testbeam
→ Only hits in 2 time bins used for physics analysis

Contribution from noise negligible for most analysis

Tracking

Clustering of hits

Performed in each layer individually

Use closest neighbor clustering (one common side)

Determine unweighted average of all hits in a given cluster (x_{cluster},y_{cluster})

Loop over layers

for layer irequest that all other layers have $N^{j}_{cluster} \leq 1$ request that number of hits in tracking clusters $N^{j}_{hit} \leq 4$ request at least 10/38(52) layers with tracking clustersfit straight line to $(x_{cluster}, z)$ and $(y_{cluster}, z)$ of all tracking clusters jcalculate χ^{2} of track

$$\chi^{2} / N_{track} = \sum_{j \neq i} \frac{(x_{cluster}^{j} - x_{track}^{j})^{2}}{1} + \sum_{j \neq i} \frac{(y_{cluster}^{j} - y_{track}^{j})^{2}}{1}$$

request that $\chi^2/N_{track} < 1.0$ inter/extrapolate track to layer i search for matching clusters in layer i within

$$R = \sqrt{(x_{cluster}^{i} - x_{track}^{i})^{2} + (y_{cluster}^{i} - y_{track}^{i})^{2}} < 2.5 cm$$

record number of hits in matching cluster

Alignment

For each readout board i plot residual in x/y

$$R_{x}^{i} = x_{cluster}^{i} - x_{track}^{i}$$
$$R_{y}^{i} = y_{cluster}^{i} - y_{track}^{i}$$

Dimensions in [cm]

Most distributions look OK

Few have double peaks

...as does simple a Toy MC + RPCSIM

Residual in x [cm]

Mean residuals for each Front-end board versus layer#

Mean of residual distributions

x-residual

Variations of < 3 mm Alignment of layers by hand

Correlation between the 6 boards within a layer

y-residual

Variations <0.5 mm Cassette resting on CALICE structure

Systematic trend compatible with cassettes being lower in center of stack by $\sim 0.5 - 0.7$ mm

Residuals for each Front-end board or layer

1 entry/readout board

1 entry/layer

Note

Mean by construction close to 0 External tracking not available

After alignment each readout board in x

After alignment in y

Run 610055 using alignment obtained with 610063: alignment in x

As expected, not quite as good, but still acceptable

Scan across pad

 $x = Mod(x_{track} + 0.5, 1.)$ for 0.25 < y < 0.75 y = Mod($y_{track} - 0.03, 1.$) for 0.25 < x < 0.75

Note These features **not** implemented explicitly into simulation Simulation distributes charge onto plane of pads...

Angles of muon tracks

Data

Data CALICE Preliminary

GEANT4 + RPCSIM

Monte Carlo CALICE Preliminary

Note

Incident angle distribution in MC tuned to reproduce data Simulation acceptable

Efficiencies, multiplicities

Select 'clean' regions away from

- Dead ASICs (cut out $8 \times 8 \text{ cm}^2$ + a rim of 1 cm)
- Edges in x (2 rims of 0.5 cm)
- Edges in y (6 rims of 0.5 cm)
- Fishing lines (12 rectangles of ±1 cm)
- Layer 27 (with exceptionally high multiplicity)

Measure average response

Note:

Simulation of RPC response tuned to Vertical Slice Test DHCAL shows higher efficiency and lower multiplicity (thinner glass)

Tuning, tuning, tuning...

χ^2 comparison of normalized histograms of multiplicity

Note: Tuning done 'by hand'

Very large statistics of both data and simulation \to large χ^2 No significant improvements after trial #70

Best fit

Mean =

1.461 in data

1.443 in MC

Further improvements

Systematic studies of track selection, functional form ...

Include 2nd exponential in charge distribution

Response over the entire plane

Implemented dead areas of data in MC (= corresponding hits deleted)

Average response over the entire plane (using 1 exponential only)

Response versus layer number

Dead areas, fishing lines, and edges are excluded

 $Log(z) \leftarrow same plot \rightarrow Lin(z)$

Note

Reasonable uniformity from layer to layer

Calibration factors = mean of multiplicity distribution = $\epsilon \cdot \mu$

Calibration constants as function of time

Note

Variations of +7.0 to -2.5% Data points of equal color indicate same day measurements

Track segment analysis

Method

Use clusters (= *source clusters*) in 2 layers to study layer in between (=*target cluster*) e.g. use L_{i-1} and L_{i+1} to look at L_i

Source clusters

Required to have at most 3 hits Lateral distance between source clusters at most 3 cm No additional hits within 7 cm of source clusters

Target cluster

Searched for within radius of 2 cm from line between source clusters

Comparison of

Muon runs analyzed with tracks Muon runs analyzed with track segments Pion run analyzed with track segments

Clear correlation between different methods ...but systematic differences

Conclusions

Analysis of muon events has begun

Preliminary results have been presented

Geometrical alignment Response across pad Performance parameters in 'clean' regions Performance parameters over the entire plane Performance as function of time Comparison with track segment method

Results compared to **GEANT4 + RPCSIM simulation**

RPCSIM tuned to reproduce performance in 'clean' regions Reasonable agreement with data observed

Data appear to be of very high quality

Backup Slides

Simulation Strategy

With muons – tune a, T, (d_{cut}) , and Q_0 With positrons – tune d_{cut} Pions – no additional tuning

RPCSIM Parameters

Distance d_{cut}

Distance under which there can be only one avalanche (one point of a pair of points randomly discarded if closer than d_{cut})

Charge Q₀

Shift applied to charge distribution to accommodate possible differences in the operating point of RPCs

Slope a₁

Slope of exponential decrease of charge induced in the readout plane

Slope a₂

Slope of 2nd exponential, needed to describe tail towards larger number of hits

Ratio R

Relative contribution of the 2 exponentials

Threshold **T**

Threshold applied to the charge on a given pad to register a hit