Improved jet clustering algorithm with vertex information for multi-b final states

Taikan Suehara,

Tomohiko Tanabe, Satoru Yamashita (The Univ. of Tokyo)

TeV physics in ILC/LHC/...

Higgs SUSY exotics → bb (2-jet), WW (up to 4-jet) ex. missing + W (2-jet): 4-jet in pair production

Final states with many jets (4/6/8/...)

Jet clustering is a major performance driver

page 2

Example: ZHH in ILC

HHH coupling: a key to prove Higgs mechanism

Double Higgs-strahlung: largest xsec around 500 GeV

	and the second	
Decay mode	BR.	# events in 1 ab ⁻¹
ddppp	32%	73
vvbbbb	9%	21
qqbbWW*->qqbbqqqq	6%	14
llbbbb	4%	10
qqbbWW*->qqbbqql∨	3%	7
qqbbWW*->qqbbl∨qq	3%	7
others	43%	97
tt -> bbqqqq		~400,000

Extremely small cross section of 0.2fb Background (esp. top-pair) must be very strongly suppressed

Excellent b-tag in 6-jet environment

'# of b jets' in ZHH

of b-jets is reduced due to mis-jet-clustering Major problem in counting b-quarks

page 4

New idea: use vertices in jet clustering Jet A ex. bbgg with a hard gluon (b-jet) Jet B with 4-jet configuration (b-jet) Standard jet clustering: A and B might be combined while E separated IP Jet C

Jet D (gluon jet from D)

New idea: use vertices in jet clustering

et B

et)

Jet D (gluon jet from D)

(b-jet)

IP

Jet C

ex. bbqq with a hard gluon with 4-jet configuration

Standard jet clustering: A and B might be combined while E separated

Vertex clustering: Two b-jets can be separated with vertex information

New idea: use vertices in jet clustering Jet A (b-jet) (b-jet) ex. bbqq with a hard gluon

let B

et)

on jet from D)

IP

Jet

Taikan Suehara et al., TIPP11 @ Chicago, 11 June 2011 page 8

with 4-jet configuration

A and B might be combined

Two b-jets can be separated

with vertex information

Standard jet clustering:

while E separated

Vertex clustering:

Sample in MC (2D extraction)

Red circle: MC b (before gluon emission), Star: vertex found Triangle: Durham jets, Square: Our jet clustering Taikan Suehara et al., TIPP11 @ Chicago, 11 June 2011 page 9

Details (a bit) of our method

Vertex finder
 Secondary Muon ID
 Vertex combination
 Jet clustering using vertices
 Jet flavor tagging

1. A new build-up vertex finder

High-purity vertex finder is critical in this method Fake vertices significantly degrade performance! Problem:

Usual vertex finders assume jet clustering is correct ... and use the jet direction to improve purity

We cannot use jet direction since we search for vertices first

Original vertex finder

- Build-up method (pairing tracks -> association)
- Not include new idea; main effort on optimization
 mass based cuts, track combination order, etc.

For implementation details, see backup slides

2. Secondary muon ID

Secondary muons can also be used to identify heavy-flavor jets

 Secondary electrons are currently not used (because of non-trivial separation from pions)

Secondary muon criteria:

- Require hit in muon detector
- Impact parameter > 5 σ , < 5 mm
- ECAL, HCAL energy deposit

Secondary muons are treated similarly to vertices (with muon direction as vtx. direction)

3. Vertex combination

Our jet clustering strategy:

- Identify heavy flavor jets using vertices
 Separate heavy flavor jets using vertices
 b & c vertices must be combined
 - others must remain separated
- Simple combination criteria

 Opening angle to IP < 0.2 rad.
 In muon case; < 0.3 rad.

Secondary vertex

Muon direction

.....

......

H

4. Jet clustering using vertices

1. Combined vertices are listed as 'jet core'

IP

Jet core

- 2. All particles within 0.2 rad. to the jet core are associated to the core
- 3. All associated jet cores and residual particles are associated with Durham y criteria

$$y = \frac{2\min(E_1, E_2)^2 (1 - \cos \theta_{ij})}{Q^2}$$

* Jet cores with vertices are never combined to each other (y value is set to +inf.)

4. Jet clustering using vertices

- 1. Combined vertices are listed as 'jet core'
- 2. All particles within 0.2 rad. to the jet core are associated to the core
- 3. All associated jet cores and residual particles are associated with Durham y criteria

$$\mu = \frac{2\min(E_1, E_2)^2 (1 - \cos \theta_{ij})}{Q^2}$$

* Jet cores with vertices are never combined to each other (y value is set to +inf.)

4. Jet clustering using vertices

- 1. Combined vertices are listed as 'jet core'
- 2. All particles within 0.2 rad. to the jet core are associated to the core
- 3. All associated jet cores and residual particles are associated with Durham y criteria

$$y = \frac{2\min(E_1, E_2)^2(1 - \cos\theta_{ij})}{Q^2}$$

* Jet cores with vertices are never combined to each other (y value is set to +inf.)

assoc. by Durham

Durham

IP

5. Jet flavor tagging (LCFIVertex)

Neural-net based flavor tagging package of standard ILC analysis (now improving also by us, but new version not available yet)

LCFI Collaboration: NIM A 610 (573) [arxiv:0908.3019]

Performance

MC number of b-jets
 MC number of tracks from b-hadrons
 ZHH vs. top-pair b-tagging performance
 Effect on b-tag cut in ZHH analysis

1. MC number of b-jets Quick view of the vertex effect Using ZHH -> bbbbbb events (# b-jets should be 6) Procedure:

1.Jet clustering (Durham / Vertex) 2. Listing b-hadrons (MC information) Listing tracks from b-hadrons **3.** Associate b-hadrons to reconstructed jets Jet including largest # of tracks from a b-hadron is associated to the b-hadron 4. Counting jets associated to b-hadrons

1. MC number of b-jets

All jets including b – 52% -> 66% Significant improvement!

2. MC number of tracks from b-hadrons Effect on b-tagging at MC level Using ZHH -> qqHH (H->bb: 68%, Z decays to every flavor) tt -> bbcssc (each W decays to c and s quarks) **Procedure:** 1. Listing b-hadron tracks with MC information 2. Counting b-hadron tracks in each jet 3. Sort jets by number of b-hadron tracks 4. See 3rd and 4th jets: qqHH: #b=4; # b-hadron tracks should be > 0 – tt: #b=2; # b-hadron tracks should be 0

2. MC number of tracks from b-hadrons qqhh (should be non-zero) 3rd jet Durham Vertex

3. ZHH vs. top-pair b-tagging performance Study with realistic b-tagging Using ZHH -> qqHH & tt -> bbcssc (same as 2.) **Procedure:** 1.Jet clustering (Durham / Vertex) 2. Flavor tagging by LCFIVertex obtain b-likeness value (0 to 1) for each jet 3. Check ggHH vs bbcssc acceptance with varying b-likeness threshold

Both 3rd and 4th jets and sum b-likeness over all jets are examined

3. ZHH vs. top-pair b-tagging performance

Cut on 4th jet Cut on 3rd jet Cut on sum b-likeness

- Improvements seen in all criteria
- Improvements are particularly significant for high-purity region (signal eff. < 60%)

4. Effect on b-tag cut in ZHH analysis Practical impact on the physics study Using ZHH -> qqHH & tt -> bbcssc (same as 2. & 3.) 1. Jet clustering & flavor tagging 2. Determine cut value of b-likeness at signal efficiency = 50% High purity is needed to suppress enormous tt background 3. Count the remaining number of events and scale to 1 ab⁻¹ luminosity

4. Effect on b-tag cut in ZHH analysis

Vertex jet clustering Numbers in parentheses are at 1 ab⁻¹

	No cut	4 th jet cut	3 rd jet cut	3 rd & 4 th jet cut
qqHH	8352	4233	4367	3163
(H -> bb)	(73)	(37)	(38)	(28)
bbcssc	9930	95	113	20
	(100000)	(960)	(1140)	(201)

Durham jet clustering 30% improvement!

	No cut	4 th j	et cut	3 rd jet cut	3 rd j	et cut
qqHH (H -> bb)	8352 (73)		4277 (37)	4382 (38)		3116 (27)
bbcssc	9930 (100000)		145 (1460)	137 (1380)		29 (292)

page 26

Summary

Vertex clustering can improve jet clustering performance for counting b-jets Simple analysis with ZHH shows 30% improvement in reducing tt background

Backup

- ILD detector
- ZHH analysis by J. Tian
- Vertex finder details
- LCFIVertex input variables

ILD Detector

muon detector hadron calorimeter

em calorimeter

TPC

vertex detector

beam pipe

Vertex Detector

inner radius	15 mm
outer radius	60 mm
impact parameter resolution	< 5 mm (high momentum)

TPC + VXD are critical for flavor tagging!

J.Tian, ALCPG 11

Measurement of the trilinear Higgs self-coupling @ ILC

• double Higgs-strahlung (dominate at lower energy)

WW fusion (dominate at higher energy)

qqhh (with Z-like pair)

reduction table $E_{\rm cm} = 500 {\rm GeV}, M_H = 120 {\rm GeV}$

P(e-,e+)=(-0.8,+0.3)

-	1(0)0.) (0	,,		Lcm	- 000 de 1 ,		401			
					probZ1+probZ2>0.9			MLP_bbqqqq> -0.3		
	qqhh(qqbbbb)	313(138)	117173	82.0(65.1)	15.5(13.8)	13.9(13.0)	13.1(12.3)	12.7(11.9)	12.1(11.4)	8.50(8.15)
	qqbbbb	192	59994	50.9	3.17	2.97	2.01	1.75	1.28	0.55
	qqqqH(ZZH)	381	49702	45.8	6.58	5.72	5.11	4.80	4.14	2.70
	bbcsdu	394548	710285	3016	29.7	29.1	22.3	14.9	13.5	1.38
	bbuddu	199165	109200	374	10.5	7.92	5.37	5.37	5.37	0.28
	bbcssc	197790	359084	4904	58.4	53.8	47.9	39.2	36.5	2.01
	ttqq	2169	9999	170	10.0	5.08	4.83	4.70	4.49	1.85
	bbbb	40824	198431	4722	598	494	2.83	2.20	1.80	1.27
	lvbbqq	821199	797027	12216	230	33.2	6.18	6.18	4.39	0.07
	BG			25509	951	636	100	82.2	73.7	11.7
-										10

(probZ1+probZ2 > 0.9)

 $\int Ldt = 2ab^{-1}$

qqhh (without Z-like pair) reduction table

P(e-,e+)=(-0.8,+0.3)

reduction table (probZ1+probZ2 < 0.9)

 $E_{\rm cm} = 500 {\rm GeV}, M_H = 120 {\rm GeV}$

normalized			probZ1-probZ2<0.9					
qqhh(qqbbbb)	313(138)	82.0(65.1)	66.4(51.3)	63.0(50.9)	57.6(48.7)	54.9(47.1)	33.1(29.1)	16.6(15.1)
qqbbbb	192	50.9	47.7	47.4	44.9	36.2	11.7	6.00
qqqqH(ZZH)	381	45.8	39.2	38.2	35.0	32.3	15.5	7.65
bbcsdu	394548	3016	2986	2973	2869	2581	469	42.2
bbuddu	199165	374	364	364	356	ttbar	with	5.37
bbcssc	197790	4904	4845	4825	4616	mis-l		39.6
ttqq	2169	170	159	107	79.4	78.4	42.8	13.7
bbbb	40824	4722	4124	4106	3368	70.1	18.2	9.12
lvbbqq	821199	12216	11986	8041	1641	297	49.4	4.34
BG		25509	24557	20509	13015	7555	1298	129

 $Ldt = 2ab^{-1}$

put all together (preliminary)

 $e^+ + e^- \rightarrow ZHH \ M(H) = 120 \text{GeV} \ \int Ldt = 2ab^{-1}$

Polarization: $(e_{-},e_{+})=(-0.8,0.3)$

			background	significance		
Energy (GeV)	Modes	signal	background	excess (I)	measurement (II)	
500	$ZHH ightarrow (lar{l})(bar{b})(bar{b})$	6.4	6.7	2.1σ	1.7σ	
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	5.2	7.0	1.7σ	1.4σ	
FOO	7111 (27)(1)(1)	8.5	11.7	2.2σ	1.9σ	
500	$ZHH ightarrow (qar{q})(bar{b})(bar{b})$	16.6	129	1.4σ	1.3σ	

we are interested in:

- A. the combined significance of ZHH excess.
- B. the combined precision of measured ZHH cross section.

Overall signal excess: 3.9σ in 2 ab⁻¹ -> not enough??

- Original jet finder based on "build-up" method
 ZVTOP cannot be used without tuning
 - It's designed to be used after jet clustering
 - Too many fakes without "jet-direction" parameter

- IP tracks are firstly removed (tear-down)
 Vertices are calculated for every track-pair
 - Calculate nearest points of two helices
 - Geometric calculation for the start point
 - Minuit minimization using track error-matrices

Pre-selection

- Mass < 10 GeV (B: ~5 GeV)</p>
- Momentum & vertex pos: not opposite to IP
- Vertex mass < energy of either track
 - This selection is very effective for dropping fakes
- Vertex distance to IP > 0.3 mm
- Track chi2 to the vertex < 25</p>
- Associate more tracks to passed vertices
 - Using same criteria as above
- Sort & select obtained vertices by probability
 - Associated (# tracks >=3) vertices are prioritized
 - Example in next slide...

Example: 5 vertices are found

Vertex #	Tracks included	Probability
1	1,2,3	0.9
2	2,4,5	0.4
3	3,4	0.8
4	5,6	0.6
5	6,7	0.5

Example

	Probability	Tracks included	Vertex #	۲
Adopted!	0.9	1,2,3	1	
	0.4 -> 0.6	% ,4,5	2	4
Removed!	0.8	▓4	3	
	0.7	5,6	4	< √
	0.5	4,7	5	

Example

Vertex #	Tracks included	Probability	
1	1,2,3	0.9	Adopted!
4	5,6	0.7	
2	4,5	0.6	
5	4,7	0.5	

Example

	Probability	Tracks included	Vertex #
Adopted	0.9	1,2,3	1
	0.7	5,6	4
Remove	0.6	4,💢	2
	0.5	4,7	5

Taikan Suehara et al., TIPP11 @ Chicago, 11 June 2011 page 39

d!

Example

	Probability	Tracks included	Vertex #
Adopted!	0.9	1,2,3	1
Adopted!	0.7	5,6	4
Adopted!	0.5	4,7	5

Finally, three vertices are adopted.

Vertices in ZHH -> bbbbbb

In 347 bbbbbb events: Good = 2040, bad (not from B-semistable) = 90

2. Vertex selection & muons

 Vertex selection - K0 vertices are removed (mass +- 10 GeV) Vertex position > 30 mm are removed Mostly s-vertices Secondary muons - Following tracks are treated as same as vertices With muon hit Currently > 50 MeV energy deposit Impact parameter (> 5 sigma & not too much) • Ecal, Hcal energy deposit

Selection performance

Vertex selection (347 bbbbbb events)

	Good vtx	Bad vtx	Purity
No cut	2040	90	96%
K0 and pos cut	1960	61	97%

Optimized for efficiency (bad contains partially bad)

Lepton selection (347 bbbbbb events)

	Secondary µ	Other µ	Others	Purity
No cut	430	585	23168	1.8%
Muon hit > 50 MeV	267	23	49	79%
All cuts	178	4	5	95%

Optimized for purity (not so good efficiency)

LCFI input variables

• LCFI input variables:

- three categories, trained independently:
 - # vertex = 0
 - # vertex = 1
 - # vertex >= 2
- for # vertex = 0 (8 variables):
 - d₀ impact parameter (1)
 - d₀ impact parameter (2)
 - z₀ impact parameter (1)
 - z₀ impact parameter (2)
 - track momentum (1)
 - track momentum (2)
 - d₀ joint probability
 - z₀ joint probability
- for # vertex = 1, >=2 (8 variables):
 - d₀ joint probability
 - z₀ joint probability
 - vertex decay length
 - vertex decay length significance
 - vertex momentum
 - pt-corrected vertex mass
 - vertex multiplicity
 - vertex probability from the fitter

(1) and (2) indicate the most and second most significant track.

"joint probability" – probability that a track comes from the IP, computed *a priori* using the distribution of impact parameter significance (separately for d_0 and z_0), multiplied for all tracks in the jet

