

Large Hadron Collider

Ettore Focardi

sity and INFN Florence

27 km circumference

CMS detector status

GMC

NFN

Istituto Nazionale

Lake

512

Geneva

TIPP 2011 Chicago

ATLAS

Outline

- Description of the CMS detector
- 2010, 2011 data taking
- Performance
- Conclusions

The CMS collaboration

39 Countries, 169 Institutes, 3170 scientists and engineers (800 students)

General purpose, hermetic experiment. Compact fully solenoidal design. All central tracking and calorimetry inside a superconducting solenoid (B=3.8T)-> Large BL²

E. Focardi TIPP 2011

stituto Nazionale

Pixel detector for precise reconstruction of secondary vertexes, Strip Tracker with excellent tracking efficiency and resolution $\Delta p/p < 1\%$ @ 100GeV

CMS Tracker

CMS Experiment at the LHC, CERN Tue 2010-Mar-30 13:23:00 CE' Run 132440 Event 4285681 C.O.M. Energy 7.00TeV

10 June 2011

SST 15148 modules 24244 Silicon sensors 75000 readout chip **9.6 M** readout channels ~25 M bondings 206 m^2 Silicon active area 29 modules types, 16 sensor designs 12 hybrids types ~ 150 km fibers/cables 1944 powers supply modules 356 control modules 37 K optical links $24 \text{ m}^3 \text{ volume}$

> •Forward Pixel Detector (FPix) has two disks on each side at 34.5 cm and 46.5 cm •FPix has 672 modules

> •Barrel Pixel Detector (**BPix**) has **3** layers of radii 4.3 cm, 7.2 cm and 11.0 cm

•BPix has 768 modules

•Total of 1440 modules 1.1 m² Si sensors

10 June 2011

E. Focardi TIPP 2011

CMS Electromagnetic calorimeter

BARREL (EB) η <1.48	ENDCAP (ΕΕ) 1.48 < η < 3.0	PRESHOWER (ES) 1.6< η <2.6
· · ·	4 Dee's	4 Planes
(2.2 x 2.2 x 23 cm ³) - 26X ₀	14648 crystals	Total of 137216 Si strips
36 Super Modules	(3 x 3 x 22 cm ³) – 25X ₀	Pb/Si - 3X _o
Avalanche Photo Diodes	Vacuum Photo Triodes	- •

E. Focardi TIPP 2011

E. Focardi TIPP 2011

Robust, efficient and redundant muon triggering system (RPC+DT, CSC) Efficient muon identification and reconstruction

10 June 2011

E. Focardi TIPP 2011

UNIVERCE

- Momentum / charge of tracks and secondary vertices (e.g. from b-quark decays) are measured in central tracker (Silicon layers).
- Energy and positions of electrons and photons measured in high resolution electromagnetic calorimeters. (~0.5% @ ET ~ 50 GeV)
- Energy and position of hadrons and jets measured mainly in hadronic calorimeters
- Muons identified and momentum measured in external muon spectrometer (+central tracker) dp/p < 1% @ 100GeV and < 10%@1 TeV
- Neutrinos "detected and measured" through measurement of missing transverse energy (ETmiss) in calorimeters (hermeticity; good Missing ET resolution)

10 June 2011

E. Focardi TIPP 2011

Istituto Nazionale di Fisica Nucleare

started operations from summer 2008: a set of cosmic runs provided calibration constants(alignment..)

Trigger system

- Hardware L1: Based on muon detectors and calorimeters
 - Timing precision ≤ 1 ns;
 - L1 45-70kHz
- Software HLT. Flexible
 - Fast (~50ms) full event reconstruction using also tracker information.
 - Data logging 200-600Hz.
- High efficiency and sharp turn-on curves

see P. Klabbers yesterday's talk

Data taking 2010

- pp- collisions: 7 TeV from March 2010
 - LHC Delivered 47 pb⁻¹,CMS recorded 43 pb⁻¹.
 - Great flexibility of trigger system.
 - Overall data taking efficiency 92%, ~85% with all subdetectors in perfect conditions

	MUON- CSC	MUON- DT	MUON- RPC	HCAL BARRE L	HCAL ENDCA P	HCAL FORWA RD	ECAL BARRE L	ECAL END- CAP	PRE- SHOWE R	STRIP TRACK ER	PIXEL TRACK ER	
Series	1 98.5	99.8	98.8	99.9	100	99.9	99.3	98.9	99.8	98.1	98.2	

- Heavy Ions: 8th November
 - Delivered ~ 8.4 μ b⁻¹, efficiency ~ 93%

Data taking 2011

Detector performance

Start as: "Don't expect everything to work at first. . .

BUT... even such a complex apparatus do seem to be working as expected from simulations!

Tracker Basic Performance

Tracker Power system

Power System: it provides 1.25 and 2.5 Volts to the Fe electronics and up to 600 V to the Si modules. There are ~1200 electronics CAEN modules to power up the system: 356 control groups, 1944 power groups, 3888 HV channels.

The Tracker can do the HV OFF to HV ON transition in ~75''. The total power is 36-49 KW.

The system is stable and the overall exchange rate is at 1% level/year.

Tracker cooling system

Interventions started to stabilize 10 June 2011 the operation: VFD, P reduction,...

E. Focardi TIPP 2011

19

Tracking and muon performance

E. Focardi TIPP 2011

INFN

Istituto Nazionale di Fisica Nucleare

Tracking and muon performance

E. Focardi TIPP 2011

Data Quality monitoring

- Detector performance are monitored using the DQM system
 - online to give prompt feedback during data taking
 - offline to analyse the full statistics and certify data
- The full tracker reconstruction chain is monitored through histograms on
 - Status of Feds , Occupancy, Clusters, Track parameters
- Module level histograms are further processed to
 - Create summary histograms
 - Perform Quality Test
 - Produce global DQM flags

Tracker Alignment

- 15148+1440 sensors : 6 degrees of freedom each, O(10µm) accuracy
- Distributions of Mean Residual (DMR): median of the residual distributions in each sensor ($N_{hit} > 200$)

less affected by track, hit and multiple scattering uncertainties

- Minimization hit/track residuals χ^2
 - track parameters and sensor positions
- Two approaches:
 - Millipede (II): Global minimization, custom track model
 - "Hits and Impact Points" (HIP): local minimization of sensor position, iterative, detailed track model
 - Applied sequentially from large substructures to sensor level
- DMRs spreads Barrel: < 6µm Endcaps:<10µm
- Good complementarity between cosmics and minimum bias collision events

Particle Identification

- Energy loss in Si strip sensors used for particle ID
- Fundamental for searches of exotica particles
- Mass of candidate evaluated starting from the relation between the particle momentum and dE/dx estimator

ECAL, photon and electron performance

ECAL Barrel

CMS preliminary $\sqrt{s} = 7$ TeV

→yy Calibration Trigger

Data

σ_{data} = 8.2%

σ_{MC} = 8.1%

0.12 0.14 0.16 0.18 0.2

γγ invariant mass (GeV/c²)

γγ pairs /0.005 GeV/c²

0.22

100

60

20

0.06 0.08 0.1

SINFN Istituto Nazionale di Fisica Nucleare

CMS preliminary vs = 7 TeV

 $\pi^0 \rightarrow \gamma \gamma$ Calibration Trigger

σ_{Data} = 16.5%

0.12 0.14 0.16 0.18 0.2 0.22 0.24

yy invariant mass (GeV/c²)

σ_{MC} = 15.9%

ECAL Endcaps

Status: EB: 99.08%, EE: 98.56%, ES: 96.08%

1.4

0.8

0.6

0.4

0.08

0.1

γγ pairs /0.005 GeV/c²

- ECAL provides very good energy resolution down to low energies
- Performance in agreement with expectations
- At high ET the scale in the barrel region is now set by the π⁰ calibration (correct to 1%); 3% shift in the endcap region

10 June 2011

Conclusions

- CMS detector is operated since 2008: several millions of cosmics data have been collected until the LHC startup at the end of 2009.
- Since 2010 CMS has collected ~ 900 pb⁻¹ of integrated luminosity in pp collisions at 7 TeV.
- No major problems occurred during the two years LHC pp operation.
- Detector performance are excellent, as expected from the simulations.
- Given the good LHC luminosity performance, stay tuned for new physics results soon !!!!.

Back-up slides

The CMS design: goals

- Good muon identification and momentum resolution:
 - Redundant measurements and redundant trigger systems
 - ΔM_{µµ} / M_{µµ} ≈ 1% at 100 GeV
 - Unambiguous determination of the charge for p^T_u < 1 TeV
- Precise and efficient inner tracking, including vertex capabilities:
 - Efficient triggering and offline tagging of taus and b-jets
 - Pixel detectors close to the interaction region
- Good electromagnetic identification and photon/electron energy resolution:
 - $\Delta M_{ee} / M_{ee}$, $\Delta M_{yy} / M_{yy} \approx 1\%$ at 100 GeV
 - Large coverage and good granularity, π⁰ rejection
- Good jet and missing transverse energy resolution:
 - Hermetic coverage, fine lateral segmentation

A huge, ultra-precise silicon tracker system:

- For $p_T \le 100$ GeV, $\Delta p_T / p_T \approx 0.5-2\%$ ($|\eta| < 1.6$)
 - Muon resolution dominated by inner tracking resolution for $p_{\tau} < \approx 100$ GeV
- Δd_{xy}≈10 µm resolution at very high p_T
- $\Delta z \approx 20-40 \ \mu m$ resolution at very high $p_T(|\eta| < 2)$

CM

CMS: a special muon system

STATUNIVERNI

□ The CMS muon system (barrel and also endcap) is optimized for:

- Robust, efficient and redundant muon triggering system (chambers+RPCs)
- Efficient muon identification and reconstruction ($|\eta|$ <2.4, redundant coverage)
- Precise measurement (< 10%) for TeV momenta (good alignment + level arm)</p>

CMS Electromagnetic Calorimeter

A crystal calorimeter (Pb WO₄): extremely good resolution (stochastic term ≈ 2.8% at 1 GeV), low noise (noise term ≈ 120 MeV), good uniformity/intercalibration (uniformity ≈ 0.3% from test-beam studies):

Endcap

ECAL (EE)

= 3.0

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.8\%}{\sqrt{1}E}\right)^2 + \left(\frac{0.12}{E}\right)^2 + (0.3\%)^2$$
 (E in GeV)

0.4

0.2

50

100

150

200

0 250 E (GeV

10 June 2011

E. Focardi TIPP 2011

CMS Hadronic Calorimetry

- Scintillator-brass/steel tile calorimeter: compact, hermetic, good segmentation and coverage (|η|<5.2)
- Jet angular resolution ~ 20 (30) mrad in φ (θ) at E_T ≥ 100 GeV
- Jet transverse energy resolution (using ECAL+HCAL only, barrel):

$$\left(\frac{\sigma}{E_T}\right)^2 = \left(\frac{1.25}{\sqrt{E_T}}\right)^2 + \left(\frac{5.6}{E_T}\right)^2 + (3.3\%)^2$$