

Instrumentation for Theory-Inspired Photocathode Development within the Large Area Picosecond Photo Detector (LAPPD) Project

Junqi Xie¹

Klaus Attenkofer¹, Marcel W. Demarteau¹, Henry J. Frisch^{1,2}, Joe Gregar¹, Seon W. Lee¹, Richard Northrop², Alexander Paramonov¹, Anatoly Ronzhin³, Greg Sellberg³, Robert G. Wagner¹, Dean Walters¹, Zikri Yusof¹ LAPPD Collaboration

¹Argonne National Laboratory, Argonne, IL

²University of Chicago, Chicago, IL

³Fermi National Accelerator Laboratory, Batavia, IL

Outline

Motivation

- The Photocathode Building Blocks at ANL
- Instrumentation for Photocathode Development

Optical Station

- PMT Growth Facility
- Growth and Characterization Chamber
- > Summary

Motivation

Thin planar large area photo detectors with good position and time resolution

can be widely used in Cherenkov-counter particle identification readout, muon trigger systems, segmented calorimeters, medical imaging and time-of-flight systems.

- The production cost of the detection system would be dramatically reduced using large area MCP-PMT detectors compared to conventional small phototubes and bases.
- Many fundamental detector properties such as dark current, quantum efficiency, response time, and lifetime are determined by the properties of the cathode.
- Instrumentation is critical to study the film physical characteristics and the complex growth behavior for obtaining high quality photocathodes.

The Photocathode Building Blocks at ANL

- Goal: 8"X8" multi-alkali Photocathodes
- Path to the goal: Utilization of existing lab infrastructure, design and build new instruments
- Resources:
 - LAPPD collaboration (all partners)
 - Accelerator community
 - X-ray detector community (APS@ANL /NSLS@BNL)

Photocathode Development Instruments

Glove box -Substrate preparation and contamination level test

Photocathode Growth / Characterization Chamber

Basic science study for growth optimization 5

Photocathode Growth Instruments

Growth / Characterization Chamber

PMT Fabrication facility for 4"X4" photocathode

Prototype Facility for 8"X8" photodetector

6

Photocathode Characterization Instruments

X-ray, AFM FacilityVisualization of growth and activation process (APS, BNL)

PMT Fabrication Equipment

- Pathway to make photocathdes which can be incorporated into a working detector
- PMT fabrication equipment
 - Exact recipe test
 - Engineering issues of evaporators

LEDs are used as light source and introduced into the oven to monitor the in-situ QE

I-V Curve and QE of PMT Cathodes

Small PMT

QE of three cathodes

The I-V curve and QE of three PMT cathodes grown using fabrication facility were measured using the optical station

The Growth and Characterization Chamber

- Pathway to develop photocathode

- Modifications of recipe
 - Cleaning procedure (ion/atomic source)
 - Base pressure influence on growth and functionality
 - Evaporation versus sputter
 - Sequential versus co-evaporation
- Influence of inter layer
 - Electronic properties
 - Frequency response
 - Optical properties

Growth /Characterization chamber under construction

- Compact and Efficient
 - Heating, Quenching
 - Activation
 - Compatible for various types of activation materials (Cs, O, K, Sb etc.)
 - In-situ characterization
 - Optical characterization
 - Electrical characterization
- Can Host Variety of Samples
 - Type III-V or Alkali
- Designed to transfer samples to other modules under vacuum

In-situ Characterization Chamber

Cryostat (4K – 900K) X X Z Manipulation

itructural / Electrica

- Pathway to develop photocathode

Various characterizations can be integrated to study the influence of different parameters and optimize growth recipe:

Sample centered in chamber Temperature Range: 4K - 1050K Rotatable f & q

- Fiber optic integrated: laser
- Optical characterization:
 - n Transmittance, Reflectance, Absorbance
 - Function of wavelength
- Electrical characterization:
 - Quantum Efficiency QE (λ)
 - Dark Current D(T)
 - Photo-conductivity
 - Temperature dependent I-V curves
 - Lateral and transversal conductivity

Summary

- A working laboratory for the development of cost-effective large area photocathodes at Argonne National Laboratory is being designed and commissioned.
- The instrumentation allows the study of optical properties, electrical behavior (I/V-curves, photoconductivity), and spectral response of the cathode (quantum efficiency).
- The system is part of a network using various DOE user facilities allowing in-situ experiments to determine the microscopic and chemical structure of the cathode.
- Long term goals:
 - Establishing a photocathode center (collaboration with other labs)
 - Provide access to state-of-the-art basic sciences tools
 - Foster collaborations inside the community
 - Bridge the gap between basic sciences and industry

Thanks for your attention!