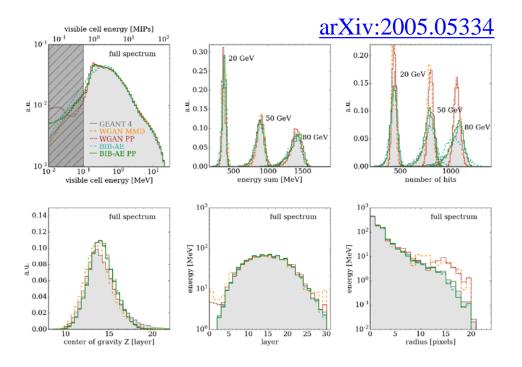
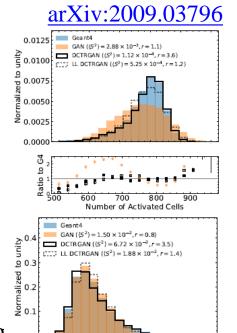
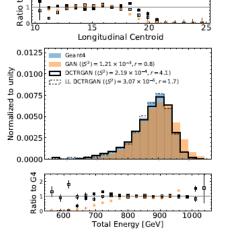
ML4Sim @ CMS

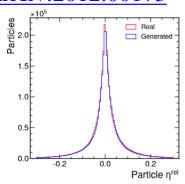

Kevin Pedro (FNAL) April 22, 2021

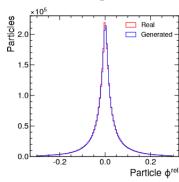
CMS Simulation

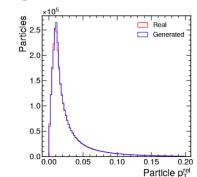

- CMS FullSim is $4-6 \times faster$ than baseline Geant4
 - o Numerous technical optimizations & physics-preserving approximations
 - Sustained effort to commission and adopt new Geant4 versions
- CMS FastSim application: $10-20 \times faster$ than FullSim
 - o Includes sim- and reco-level optimizations (tracking)
 - o Currently used for generation of large supersymmetric model scans, some studies of systematic uncertainties
- ➤ Well-positioned for Run 3, but further acceleration crucial for Phase 2
 - o May deploy some ML prototypes for specific use cases during Run 3
 - o Provides natural avenue to utilize heterogeneous computing resources (GPUs, FPGAs, HPCs, etc.)
 - o Need to balance *tradeoffs*: ML research vs. implementing, testing, validating in experiment software framework and production
- Next slides highlight several R&D projects from CMS members
 - More R&D projects ongoing internally

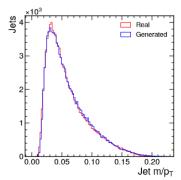

Ongoing Efforts (1)

- Bounded Information Bottleneck:
 - Generalization/combination
 of VAE and GAN
 - o Aimed at ILC imaging calorimeters
 - Similar to CMS HGCal
 - o Improves on standard GANs

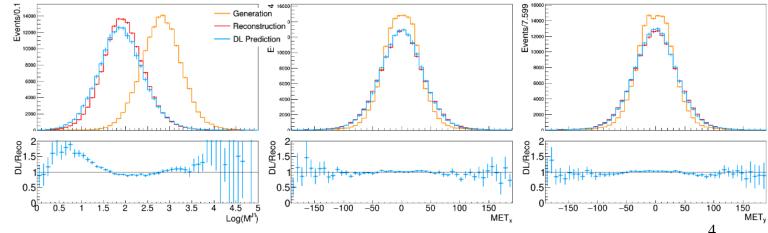

- Possible to improve GAN results with an additional classifier: "DCTRGAN"
 - Trained to
 reweight
 events after
 GAN training
 finishes






Ongoing Efforts (2)

arXiv:2012.00173



- Sparse data generation (above):
 - o Graph-based (MPNN) GAN to handle irregular geometry
 - Also exploring VAE-based architecture and techniques to generate variable-size graphs

- Analysis-specific Fast Simulation (below):
 - o Regression-based approach:
 - Learn detector response
 - Apply to generated events
 - Target specific high-level variables

arXiv:2010.01835

Backup